

The Bootstrap Sample and Bagging

Simple ideas to improve any model via ensemble

Bootstrap Samples

- Random samples of your data with replacement that are the same size as original data.
- Some observations will not be sampled. These are called out-of-bag observations

Example: Suppose you have 10 observations, labeled 1-10

Bootstrap Sample Number	Training Observations	Out-of-Bag Observations
1	{1,3,2,8,3,6,4,2,8,7}	{5,9,10}
2	{9,1,10,9,7,6,5,9,2,6}	{3,4,8}
3	{8,10,5,3,8,9,2,3,7,6}	{1,4}

(Efron 1983) (Efron and Tibshirani 1986)

Bootstrap Samples

- Can be proven that a bootstrap sample will contain approximately 63% of the observations.
- The sample size is the same as the original data as some observations are repeated.
- Some observations left out of the sample (~37% outof-bag)

➤ Uses:

- Alternative to traditional validation/cross-validation
- Create Ensemble Models using different training sets (Bagging)

(Bootstrap Aggregating)

- Let k be the number of bootstrap samples
- For each bootstrap sample, create a classifier using that sample as training data
 - Results in k different models
- Ensemble those classifiers
 - A test instance is assigned to the class that received the highest number of votes.

Bagging Example

- > 10 observations in original dataset
- > Suppose we build a decision tree with only 1 split.
- ➤ The best accuracy we can get is 70%
 - Split at x=0.35
 - Split at x=0.75
- > A tree with one split called a **decision stump**

Bagging Example Let's see how bagging might improve this model:

- 1. Take 10 Bootstrap samples from this dataset.
- 2. Build a decision stump for each sample.
- 3. Aggregate these rules into a voting ensemble.
- 4. Test the performance of the voting ensemble on the whole dataset.

Bagging Example Classifier 1

Bagging Round 1:

5~99.	9										
х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	x <= 0.35 ==> y = 1
У	1	1	1	1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1

Best decision stump splits at x=0.35

First bootstrap sample:

Some observations chosen multiple times.

Some not chosen.

Bagging Example Classifiers 1-5

Bagging Round 1:												
x	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	x <= 0.35 ==> y = 1	
y 1 1 1		1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1			
Bagging Round 2:												
х	0.1	0.2	0.3	0.4	0.5	0.8	0.9	1	1	1	x <= 0.65 ==> y = 1	
У	1	1	1	-1	-1	1	1	1	1	1	x > 0.65 ==> y = 1	
Bagging Round 3:												
х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9	x <= 0.35 ==> y = 1	
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1	
Bagging Round 4:												
x	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	0.8	0.9	x <= 0.3 ==> y = 1	
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.3 ==> y = -1	
Bagging Round 5:												
х	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	x <= 0.35 ==> y = 1	
У	1	1	1	-1	-1	-1	-1	1	1	1	x > 0.35 ==> y = -1	

Bagging Example Classifiers 6-10

Bagging Round 6:											
х	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1
У	1	-1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1
Bagging Round 7:											
х	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	x <= 0.75 ==> y = -1
У	1	-1	-1	-1	-1	1	1	1	1	1	x > 0.75 ==> y = 1
Bagging Round 8:											
x	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1
У	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1
Baggir											
x	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1	x <= 0.75 ==> y = -1
У	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1
Baggirg Round 10:											
x	0.1	0.1	0.1	0.1	0.3	0.3	0.8	0.8	0.9	0.9	x <= 0.05 ==> y = -1
У	1	1	1	1	1	1	1	1	1	1	x > 0.05 ==> y = 1

Bagging Example Predictions from each Classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

Ensemble Classifier has 100% Accuracy

• Bagging or *bootstrap aggregation* a technique for reducing the variance of an estimated prediction function.

• For classification, a *committee* of trees each cast a vote for the predicted class.

Bagging Summary

- Improves generalization error on models with high variance
- Bagging helps reduce errors associated with random fluctuations in training data (high variance)
- If base classifier is stable (not suffering from high variance), bagging can actually make it worse
- Bagging does not focus on any particular observations in the training data (unlike boosting)

 $\bullet \quad \bullet \quad \bullet$

Tin Kam Ho (1995, 1998) Leo Breiman (2001)

- Random Forests are ensembles of decision trees similar to the one we just saw
- Ensembles of decision trees work best when their predictions are not correlated they each find different patterns in the data
- Problem: Bagging tends to create correlated trees
- Two Solutions: (a) Randomly subset features considered for each split. (b) Use unpruned decision trees in the ensemble.

- A collection of unpruned decision or regression trees.
- Each tree is build on a bootstrap sample of the data and a subset of features are considered at each split.
 - The number of features considered for each split is a parameter called *mtry*.
 - ▶ Brieman (2001) suggests $mtry = \sqrt{p}$ where p is the number of features
 - I'd suggest setting *mtry* equal to 5-10 values evenly spaced between 2 and *p* and choosing the parameter by validation
 - \succ Overall, the model is relatively insensitive to values for *mtry*.
- The results from the trees are ensembled into one voting classifier.

Based on slides by Oznur Tastan et.al

Basic idea of Random Forests

Grow a forest of many trees.

Each tree is a little different (slightly different data, different choices of predictors).

Combine the trees to get predictions for new data.

Idea: most of the trees are good for most of the data and make mistakes in different places.

 $\frac{|tree A|}{p = accurancy = 3}$ $\frac{|tree B|}{p = 3}$ $\frac{|tree B|}{p = 3}$ $\frac{|tree C|}{p = 3}$ $\frac{p = 3}{3}$ $\frac{p = 3}{3}$ $\frac{majority}{p = 3}$ $\frac{vote: what's chance}{predict correctly?}$ $\frac{(1-p) = -\frac{1}{3}}{(1-p) = 3}$ $\frac{(1-p) = -\frac{1}{3}}{(1-p) = 3}$ $(1-1)^{2}$ $\frac{1}{33}^{2}$ $\frac{1}{33$ or ... 2 or 3 trees predict correctly $C_3^2 \cdot \vec{p}(r) + \vec{p}^3 = 3x \frac{2^2}{3^2} \times \frac{1}{3} + \frac{2^3}{3^3} = \frac{20}{27} \times \frac{18}{27} = \frac{2}{27} = \frac{2}{3}$

Random forest classifier, an extension to bagging which uses *de-correlated* trees.

Training Data

Random Forests Summary

Advantages

- Computationally Fast can handle thousands of input variables
- Trees can be trained simultaneously
- Exceptional Classifiers one of most accurate available
- Provide information on variable importance for the purposes of feature selection
- Can effectively handle missing data

Disadvantages

- > No interpretability in final model aside from variable importance
- Prone to overfitting --- solution: limiting maximum tree depth
- Lots of tuning parameters like the number of trees, the depth of each tree, the percentage of variables passed to each tree