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What is a Clustering?
A grouping of objects such that the objects in a group (cluster) are similar (or 
related) to one another and different from (or unrelated to) the objects in other 
groups (clusters)

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Why Cluster Analysis
• Understanding
• Group related documents for browsing, 

genes and proteins that have similar 
functionality, stocks with similar price 
fluctuations, users with same behavior

• Summarization
• Reduce the size of large data sets

• Applications
• Recommendation systems
• Search Personalization

 Discovered Clusters Industry Group 

1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 
Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 
Sun-DOWN 

 
 

Technology1-DOWN 

2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 
 

Technology2-DOWN 

3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 
MBNA-Corp-DOWN,Morgan-Stanley-DOWN 

 
Financial-DOWN 

4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 
Oil-UP 

 

 

Clustering precipitation 
in Australia



Early applications of cluster analysis
• John Snow, London 1854



Notion of a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters



Types of Clusterings
• Important distinction between hierarchical and partitional sets of 

clusters 

• Partitional Clustering
• A division of data objects into subsets (clusters) such that each data object is 

in exactly one subset

• Hierarchical clustering
• A set of nested clusters organized as a hierarchical tree 



Partitional Clustering

Original Points A Partitional  Clustering



Hierarchical Clustering

Hierarchical Clustering 
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Hierarchical Clustering dendrogram

Original Points



Other types of clustering
• Exclusive (or non-overlapping) versus non-exclusive (or 

overlapping)
• In non-exclusive clusterings, points may belong to multiple clusters.

• Points that belong to multiple classes, or ‘border’ points

• Fuzzy (or soft) versus non-fuzzy (or hard)
• In fuzzy clustering, a point belongs to every cluster with some weight 

between 0 and 1
• Weights usually must sum to 1 (often interpreted as probabilities)

• Partial versus complete
• In some cases, we only want to cluster some of the data



Clustering objectives
• Well-Separated Clusters: 

• A cluster is a set of points such that any point in a cluster is closer (or 
more similar) to every other point in the cluster than to any point not in the 
cluster. 

3 well-separated clusters



Clustering objectives
• Center-based Clusters:

• A cluster is a set of objects such that an object in a cluster is closer (more 
similar) to the “center” of a cluster, than to the center of any other cluster  

• The center of a cluster is often a centroid, the minimizer of distances from 
all the points in the cluster, or a medoid, the most “representative” point of 
a cluster 

4 center-based clusters



Clustering objectives
• Contiguous Clusters (Nearest neighbor or Transitive)

• A cluster is a set of points such that a point in a cluster is closer (or more 
similar) to one or more other points in the cluster than to any point not in the 
cluster.

8 contiguous clusters



Clustering Objectives
• Density-based clusters

• A cluster is a dense region of points, which is separated by low-density 
regions, from other regions of high density. 

• Used when the clusters are irregular or intertwined, and when noise and 
outliers are present. 

6 density-based clusters



Clustering objectives
• Shared Property or Conceptual Clusters

• Finds clusters that share some common property or represent a particular 
concept. 

A cluster is defined as a set of points that lie on a circle



Clustering objectives
• Clustering as an optimization problem

• Finds clusters that minimize or maximize an objective function. 
• Consider all possible ways of dividing the points into clusters and compute the 

`goodness' of each clustering using the objective function to find the best one.  
• Usually, finding the best is NP-hard (no polynomial algorithm).

• Can have global or local objectives.
• Hierarchical clustering algorithms typically have local objectives
• Partitional algorithms typically have global objectives

• A variation of the global objective function approach is to fit the data to a 
parameterized (probabilistic) model. 
• The parameters for the model are determined from the data, and they determine the clustering
• E.g., Mixture models assume that the data is a ‘mixture' of a number of statistical distributions.  



Clustering Algorithms
• K-means and its variants

• Hierarchical clustering

• DBSCAN



K-MEANS



K-means Clustering

• Partitional clustering approach 
• Each cluster is associated with a centroid (center point) 
• Each point is assigned to the cluster with the closest centroid
• Number of clusters, K, must be specified
• The objective is to:

• find K centroids and 
• the assignment of points to clusters/centroids 
• so as to minimize the sum of distances of the points to their respective 

centroid



K-means Clustering as an optimization problem

• Problem: Given a set X of n objects and an integer K, group the 
points into K clusters 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} such that

𝐶𝑜𝑠𝑡 𝐶 =+
!"#

$

+
%∈'!

𝑑𝑖𝑠𝑡(𝑥, 𝑐!)

is minimized, where 𝑐𝑖 is the centroid of the points in cluster 𝐶𝑖
• Note: We need to find both the grouping into clusters and the 
centroids per cluster.



K-means Clustering
• Most common definition is with euclidean distance, minimizing the 
Sum of Squares Error (SSE) – distance function
• Sometimes K-means is defined like that

• Problem: Given a set X of n points in a d-dimensional space and 
an integer K group the points into K clusters 𝐶
= {𝐶1, 𝐶2, … , 𝐶𝑘} such that

𝐶𝑜𝑠𝑡 𝐶 =+
!"#

$

+
%∈'!

𝑥 − 𝑐! (

is minimized, where 𝑐𝑖 is the mean of the points in cluster 𝐶𝑖

Sum of Squares Error (SSE)



Complexity of the k-means problem

• NP-hard if the dimensionality of the data is at least 2 (d≥2)
• Finding the best solution in polynomial time is infeasible

• For d=1 the problem is solvable in polynomial time (how?)

• A simple iterative algorithm works quite well in practice



1. Select 𝐾 points as the initial centroids
2. repeat
3. Form 𝐾 clusters by assigning each point to the closest centroid
4. Compute the new centroid* of each cluster 
5. until The centroids do not change 

K-means Algorithm
• Also known as Lloyd’s algorithm.
• K-means is sometimes synonymous with this algorithm

*The centroid of a set of points is the point that is minimizes 
the sum of distances from the points in the set



Example
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Example
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K-means Algorithm – Initialization
• Initial centroids are often chosen randomly.

• Clusters produced vary from one run to another.



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Dealing with Initialization
• Do multiple runs and select the clustering with the smallest error

• Select original set of  points by methods other than random . 
E.g.,  pick the most distant (from each other) points as cluster 
centers (K-means++ algorithm)



K-means Algorithm – Centroids
• ‘Closeness’ is measured by some similarity or distance function

• E.g., Euclidean distance (SSE), cosine similarity, correlation, etc.
• The centroid depends on the distance function

• The minimizer for the distance function
• Centroid:

• The mean of the points in the cluster for SSE, and cosine similarity
• The median for Manhattan distance.

• Finding the centroid is not always easy 
• It can be an NP-hard problem for some distance functions

• E.g., median for multiple dimensions



K-means Algorithm – Convergence
• K-means will converge for common similarity measures mentioned 
above.
• Most of the convergence happens in the first few iterations.
• Often the stopping condition is changed to ‘Until relatively few points change 

clusters’
• Complexity is O( n * K * I * d )

• n = number of points, 
• K = number of clusters, 
• I = number of iterations, 
• d = dimensionality

• In general a fast and efficient algorithm



Limitations of K-means
• K-means has problems when clusters are of different: 

• sizes
• densities
• non-globular shapes

• K-means has problems when the data contains outliers.



Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)



Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)



Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)



Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.



Overcoming K-means Limitations

Original Points K-means Clusters



Overcoming K-means Limitations

Original Points K-means Clusters



Variations
• K-medoids: Similar problem definition as in K-means, but the 
centroid of the cluster is defined to be one of the points in the 
cluster (the medoid).

• K-centers: Similar problem definition as in K-means, but the goal 
now is to minimize the maximum diameter of the clusters
• diameter of a cluster is maximum distance between any two points in the 

cluster. 





DBSCAN



DBSCAN: Density-Based Clustering
• DBSCAN is a Density-Based Clustering algorithm

• Reminder: In density-based clustering we partition points into dense 
regions separated by not-so-dense regions.

• Important Questions:
• How do we measure density?
• What is a dense region?

• DBSCAN:
• Density at point p: number of points within a circle of radius Eps
• Dense Region: A circle of radius Eps that contains at least MinPts points



DBSCAN
•Characterization of points

• A point is a core point if it has more than a specified number of 
points (MinPts) （not including the said itself) within Eps
• These points belong in a dense region and are at the interior of a cluster

• A border point has fewer than MinPts within Eps, but is in the 
neighborhood of a core point.

• A noise point is any point that is not a core point or a border point. 



DBSCAN: Core, Border, and Noise Points



DBSCAN: Core, Border and Noise Points

Original Points Point types: core, border and noise

Eps = 10, MinPts = 4



Density-Connected points
• Density edge

• We place an edge between two core 
points q and p if they are within distance 
Eps.

• Density-connected

• A point p is density-connected to a point q 
if there is a path of edges from p to q

p

q
p1

p q

o



DBSCAN Algorithm
•Label points as core, border and noise
•Eliminate noise points
•For every core point p that has not been assigned to a 
cluster
•Create a new cluster with the point p and all the points 
that are density-connected to p.

•Assign border points to the cluster of  the closest core 
point.





When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes



DBSCAN: Sensitive to Parameters



When DBSCAN Does NOT Work Well

Original Points
(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data



Other algorithms
• PAM, CLARANS: Solutions for the k-medoids problem
• BIRCH: Constructs a hierarchical tree that acts a summary of the 
data, and then clusters the leaves.

• MST: Clustering using the Minimum Spanning Tree.
• ROCK: clustering categorical data by neighbor and link analysis
• LIMBO, COOLCAT: Clustering categorical data using information 
theoretic tools.

• CURE: Hierarchical algorithm uses different representation of the 
cluster

• CHAMELEON: Hierarchical algorithm uses closeness and 
interconnectivity for merging



CLUSTERING EVALUATION


