

Data Mining for Business Analytics

Lecture 10: Similarity and Nearest Neighbors

Stern School of Business New York University Spring 2014

Similarity and Distance

• If two objects can be represented as feature vectors, then we can compute the distance between them

Attribute	Person A	Person B
Age	23	40
Years at current address	2	10
Residential status (1=Owner, 2=Renter, 3=Other)	2	1

Euclidean Distance



Euclidean Distance

$$\sqrt{\left(d_{1,A}-d_{1,B}\right)^{2}+\left(d_{2,A}-d_{2,B}\right)^{2}+\cdots+\left(d_{n,A}-d_{n,B}\right)^{2}}$$

| | A,B | | 2 represents the L2 norm

$$d(A,B) = \sqrt{(23-40)^2 + (2-10)^2 + (2-1)^2} = 18.8$$

Other Distance Functions

$$d_{Manhattan}(X,Y) = ||X - Y||_1 = |x_1 - y_1| + |x_2 - y_2| + \cdots$$

(L1-norm, taxicab-distance)

$$d_{Cosine}(X, Y) = 1 - \frac{X \cdot Y}{\|X\|_2 \cdot \|Y\|_2}$$

where $|\cdot|_2$ represents the L2 norm, or Euclidean length, of each feature vector (for a vector this is simply the distance from the origin).

$$d_{Jaccard}(X,Y) = 1 - \frac{|X \cap Y|}{|X \cup Y|}$$
 where, X and Y are sets

Example: "Whiskey Analytics"

1.	Color: yellow, very pale, pale, pale gold, gold, old gold, full gold, amber, etc.	(14 values)
2.	Nose: aromatic, peaty, sweet, light, fresh, dry, grassy, etc.	(12 values)
3.	Body: soft, medium, full, round, smooth, light, firm, oily.	(8 values)
4.	Palate: full, dry, sherry, big, fruity, grassy, smoky, salty, etc.	(15 values)
5.	Finish: full, dry, warm, light, smooth, clean, fruity, grassy, smoky, etc.	(19 values)

Consequently there are 68 binary features of each whiskey.

Whiskey	Distance	Descriptors
Bunnahabhain	_	gold; firm, med, light; sweet, fruit, clean; fresh, sea; full
Glenglassaugh	0.643	gold; firm,light,smooth; sweet,grass; fresh,grass
Tullibardine	0.647	gold; firm,med,smooth; sweet,fruit,full,grass,clean; sweet; big,arome,sweet
Ardbeg	0.667	sherry; firm,med,full,light; sweet; dry,peat,sea;salt
Bruichladdich	0.667	pale; firm,light,smooth; dry,sweet,smoke,clean; light; full
Glenmorangie	0.667	p.gold; med,oily,light; sweet,grass,spice; sweet,spicy,grass,sea,fresh; full,long

Introduction to Wasserstein Distance

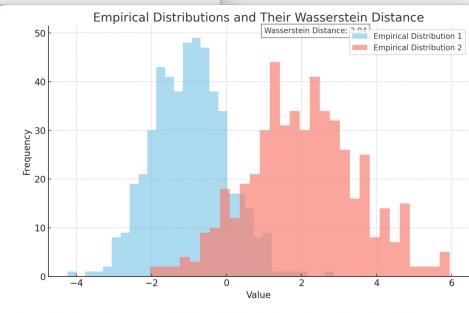
What is Wasserstein Distance?

- Also known as the Earth Mover's Distance (EMD).
- Measures the distance between two probability distributions over a given metric space.
- Intuitively, it represents the minimum cost of transporting mass to transform one distribution into the other.

Key Properties

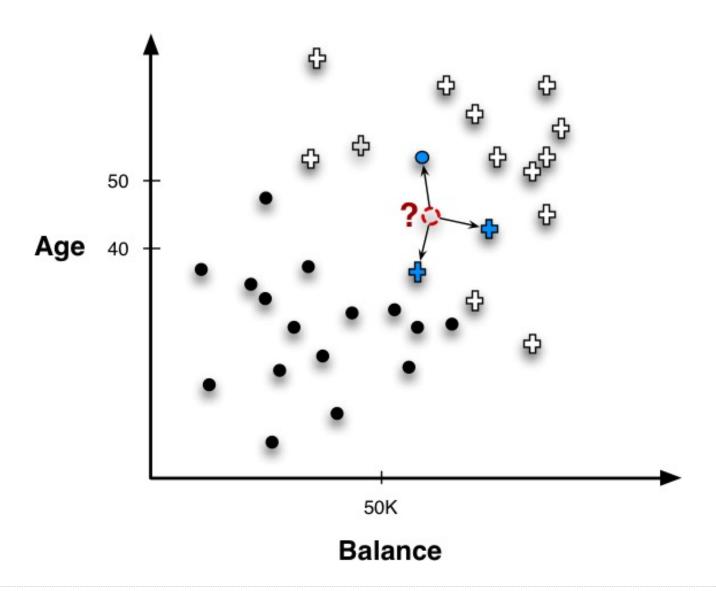
- Metric: Wasserstein distance is a proper distance metric, satisfying non-negativity, symmetry, and the triangle inequality.
- Interpretability: Offers a more intuitive and meaningful distance measure for probability distributions compared to other distances (e.g., Euclidean, KL divergence).
- Applications: Widely used in various fields such as optimal transport, machine learning (especially in

generative adversarial networks - GANs), image retrieval, and more.



I've updated the plot once more, this time adjusting the legend to avoid overlap with the histogram. This should provide a clearer view of both empirical distributions and the Wasserstein distance between them. [2-]

Nearest Neighbors for Predictive Modeling



Nearest Neighbors for Predictive Modeling

Customer	Age	Income (1000s)	Cards	Response (target)	Distance from David
David	37	50	2	?	0
John	35	35	3	Yes	$\sqrt{(35-37)^2+(35-50)^2+(3-2)^2}=15.16$
Rachael	22	50	2	No	$\sqrt{(22-37)^2+(50-50)^2+(2-2)^2}=15$
Ruth	63	200	1	No	$\sqrt{(63-37)^2+(200-50)^2+(1-2)^2}=152.23$
Jefferson	59	170	1	No	$\sqrt{(59-37)^2+(170-50)^2+(1-2)^2}=122$
Norah	25	40	4	Yes	$\sqrt{(25-37)^2+(40-50)^2+(4-2)^2}=15.74$

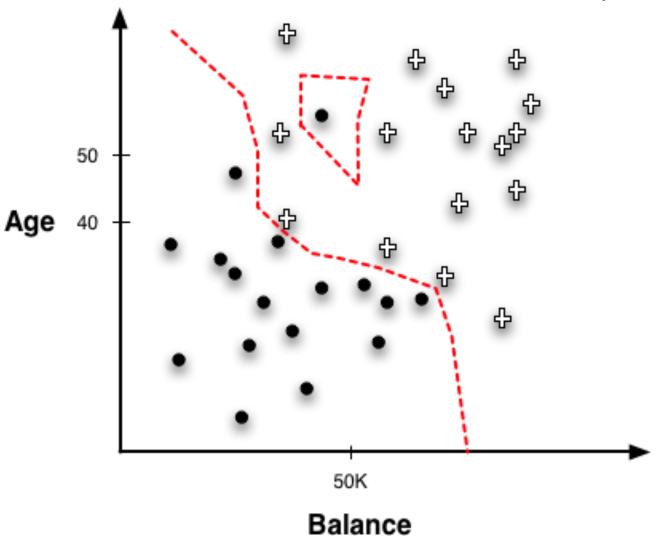
How Many Neighbors and How Much Influence?

k Nearest Neighbors

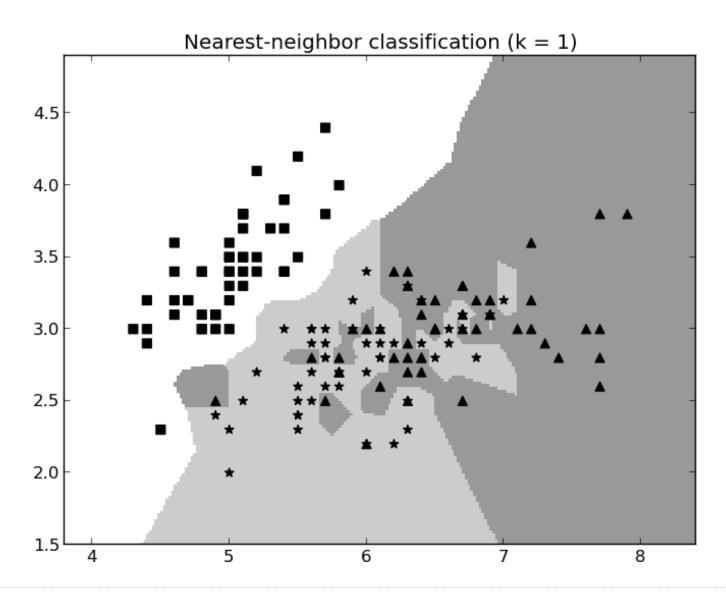
- k = ?
- k = 1?
- k = n?

Geometric Interpretation, Over-fitting, and Complexity

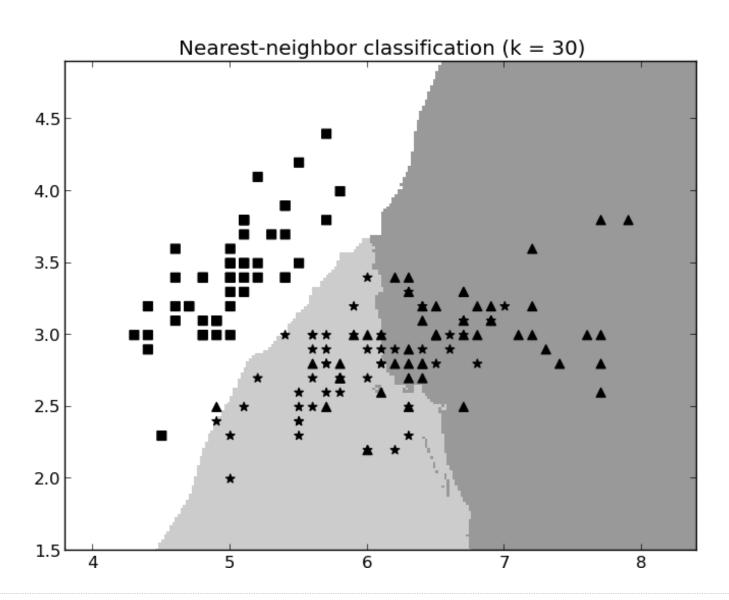
Boundaries created by a 1-NN classifier.



1-Nearest Neighbor



30-Nearest Neighbors



Issues with Nearest-Neighbor Models

- Dimensionality and domain knowledge
 - There might be too many features (and some are irrelevant)
 - The distance function need to consider the scale and importance of the features.
- Computational efficiency
 - Not suitable for online advertisement, whose decisions have to be made in a few tens of milliseconds.