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Anomaly Detection
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• Graph [SIGKDD 2018, AI Magazine 2014]

• Log Messages [SIGKDD 2016, SIGKDD 2017]

• Time Series [SIGKDD 2015, SIGKDD 2017, SIGKDD 2018]
Univariate Time Series

Mutivariate Time Series
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More intuitive 

More effective

More efficient



TCP Active Opens

TCP Retransmissions

Memory Usage

CPU Load

Disk Write

ETH1 inflow

UDP out

TCP timeout

7

Machine with monitored multivariate time series
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Motivations

How to detect the anomalies?

How to interpret the anomalies?



Challenges
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• How to deal with the temporal dependence of multivariate
time series ?

• How to deal with the stochasticity of multivariate time
series ?

• How to provide interpretation to the detected entity-level 
anomalies ?



Related work
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Deterministic
models 

Stochastic based 
models 

LSTM、
LSTM-based Encoder-Decoder 

[SIGKDD2018, ICML workshop 2016, NIPS 2016]

DAGMM、LSTM-VAE
[IEEE Robotics and Automation Letters 2018, ICLR 2018]

Deterministic models without 
stochastic variables 

Ignore the dependence of time series
or stochastic variables. 
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WiFiSeerWiFiSeerOmniAnomaly
Helps answer the questions
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Structure of OmniAnomaly
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Model Architecture of OmniAnomaly
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Input Sequence data

GRU cells for capturing temporal dependence

Stochastic cells for modeling data distribution

GRU cells for capturing temporal dependence

Reconstructed data
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Model Architecture of OmniAnomaly
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A good 𝑧! can represent 𝑥! well no matter
𝑥! is anomalous or not.

Normal data point 𝑥%

Anomaly of 𝑥%

When 𝑥! is anomalous, its 𝑧! can still
represent its normal pattern and 𝑥!" will be
normal too.

Fig: 3-dimensional 𝑧% of 𝑥%
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Core idea of OmniAnomaly
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Anomaly detection of OmniAnomaly
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𝐝𝐭"𝐓 𝐝𝐭"𝟏 𝐝𝐭 𝑥! = [𝑥!#, 𝑥!$, … , 𝑥!%], M is the dimension

Anomaly Score 𝑆! =
Reconstruction probability of 𝑥!

𝑆! =)
&'#

%

𝑆!&

Sort the 𝑆!#, 𝑆!$, … , 𝑆!% in ascending 
order, and the Top K dimensions can
interpret the anomaly.
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Anomaly detection of OmniAnomaly
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Datasets

DataSet
name

Number of 
entities

Number of 
dimensions

Training set 
size

Testing set 
size

Anomaly 
ratio(%)

SMAP 55 25 135183 427617 13.13

MSL 27 55 58317 73729 10.72

SMD 28 38 708405 708420 4.16
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F1-best of OmniAnomaly and baselines
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F1-best of OmniAnomaly and variants
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F1 obtained through POT vs. F1-best

Evaluation metrics for OmniAnomaly SMAP MSL SMD

F1 obtained through POT 0.8434 0.8989 0.8857

F1-best 0.8535 0.9014 0.9620
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F1-best of OmniAnomaly with different z
dimension
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WiFiSeerWiFiSeer

OmniAnomaly

• Achieve an overall F1-score of 0.86 in three real
world datasets.

• The interpretation accuracy is up to 0.89.
27

• The first multivariate time series anomaly detection 
method that deal with explicit temporal 
dependence among stochastic variables

• The first anomaly interpretation approach for 
stochastic based multivariate time series anomaly 
detection algorithms 
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Lessons for time series data learning

• A combination of stochastic deep Bayesian model and 
deterministic RNN model is necessary

• The connection of stochastic variables is necessary and 
effective

• It is necessary to assume non-Gaussian distributions in z-
space
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Lessons for for multivariate time series anomaly 
detection

• Reconstruction-based models are more robust than 
prediction-based models

• It is critical to obtain robust latent representations which can 
accurately capture the normal patterns of time series

• Reconstruction-based stochastic approaches offer an 
opportunity to interpret the anomalies



Thanks

su-y16@mails.tsinghua.edu.cn
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DL Algorithms in the Infra Operation
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• Advantages

– automation

– robustness

– Saving operator’s labor

• Example:

– RNN-VAE for anomaly detection



RNN-VAE Based Algorithms
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Network architecture of RNN-VAE 

models at time t

𝒙𝒕	(49) -> 𝒛𝒕	(3) -> 𝒙𝒕" 	(49)

RN
N

D
ense layers

	"# $# "#%

RN
N

D
ense layers

Variational Auto-Encoder (VAE)

KPI dimension reduced

Network Layers

• RNN: Shallow & general

• Dense layers: Deep & 
specific



Scalability is the problem for large scale
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• High-Dimensional Data 

– Machines: in millions

– KPI: in tens

– Time: Frequent data query (2880 samples/day)

Ø One model per machine:  time 
   10X minutes * 1X million machines
 

Ø One model for all: accuracy



Scalability is the problem for large scale
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• High-Dimensional Data 

– Machines: in millions

– KPI: in tens

– Time: Frequent data query (2880 samples/day)

Goal: devise scalable deep learning (DL) algorithms for 
large-scale anomaly detection
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• Intuition: Cluster Machines first, then run DL for each 
cluster

• Challenge 1: clustering model training
• Clustering cannot run on high-dimensional data
• DL cannot run on whole dataset without clustering
• Solution: Synthetic framework 

Intuition and Challenges

dependency

Coarse-grained model -> clustering -> fine-grained models
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• Intuition: Cluster Machines first, then run DL for each 
cluster

• Challenge 1: clustering model training
• Clustering cannot run on high-dimensional data
• DL cannot run on whole dataset without clustering
• Solution: Synthetic framework 

• Challenge 2: High dimension of time domain
• Hard to cluster even KPI is compressed
• Solution: compress sequence to z-distribution

• Challenge 3: Neural network training method
• Solution: fine-tuning strategy
• Freeze RNN and tune dense layers

Intuition and Challenges

dependency
RN

N

D
ense layers

	"# $# "#%

RN
N

D
ense layers
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Framework of model training
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• Fine-tuning strategy:

• RNN: fixed

• Dense layers: tuned



System architecture 
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System architecture 

Data API Online Anomaly 
Detection ( IV-C)

Offline Data

Online Data

Offline Model 
Training ( IV-B)

Model Score

Outlier Alerting
( V-D)

Results & 
Visualization

Data Preprocessing 
( IV-A)

Monitored 
machine entities

1. Data preprocessing

2. Offline model training

3. Online anomaly 
detection



Labeling tools
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Dataset & performance metrics
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• Dataset:
• # Machine entities: 533
• Dimension of each machine entity: 49 KPIs x 37440

time points (frequency: 30s, 13 days)
• Training = first 5 days, Testing = last 8 days

• Metrics:
• F1, Precision, Recall: average of all machine entities.
• Model training time



Overall performance

• Scalability
• Pre-training: fixed (5493s)

51

The execution time of each step under different 
numbers of machine entities 

F1, Precision, and Recall scores of CTF without 
and with alerting



Overall performance

• Scalability
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• feature extraction: 0.3s / 
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The execution time of each step under different 
numbers of machine entities 

F1, Precision, and Recall scores of CTF without 
and with alerting



Overall performance

• Scalability
• Pre-training: fixed (5493s)
• feature extraction: 0.3s / 

machine
• Clustering: much smaller
• Fine-tuning: 448s / model
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The execution time of each step under different 
numbers of machine entities 

F1, Precision, and Recall scores of CTF without 
and with alerting



Overall performance

• Scalability
• Pre-training: fixed 

(5493s)
• feature extraction: 0.3s / 

machine
• Clustering: much 

smaller
• Fine-tuning: 448s / 

model

• Effectiveness 
• F1: 0.830->0.892

54

The execution time of each step under different 
numbers of machine entities 

F1, Precision, and Recall scores of CTF without 
and with alerting



Overall performance

• Validating the Synthetic 
Framework
• One model/machine 
• One model for all 
• CTF w/o transfer 

55

Comparison with model variations

F1 and training time under different numbers of 
epochs for CTF w/o transfer 

2 hours
vs
2 days
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Comparison with model variations

F1 and training time under different numbers of 
epochs for CTF w/o transfer 
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Overall performance

• Validating the Synthetic 
Framework
• One model/machine 
• One model for all 
• CTF w/o transfer 
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Comparison with model variations

F1 and training time under different numbers of 
epochs for CTF w/o transfer 



Validating Design Choices

• Choice of Clustering Objects
• SPF, ROCKA, DCN 

• Choice of Distance Measures
• KL divergence, JS divergence, 

mean squared error

• Choice of Clustering 
Algorithms 
• DBSCAN, K-medoids
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Conclusion

• CTF: synthetic framework, high-dimensional time series 
(machine, KPI, time)
• Techniques: 𝒛𝒕 distribution clustering, model reuse, fine-

tuning
• Evaluation: CTF scalability and effectiveness
• Labeling tool + labeled dataset

61

CTF can reduce the model training time from about two months 
(𝑂(𝑀 $ 𝑇!)) to 4.40 hours (𝑂 𝑀 $ 𝑇" + 𝑂(𝐾 $ 𝑇!) 𝑀 ≫ 𝐾, 𝑇! ≫ 𝑇" ) 
for one hundred thousand machines. It achieves an F1-Score of 
0.830, with only 0.012 performance loss.
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