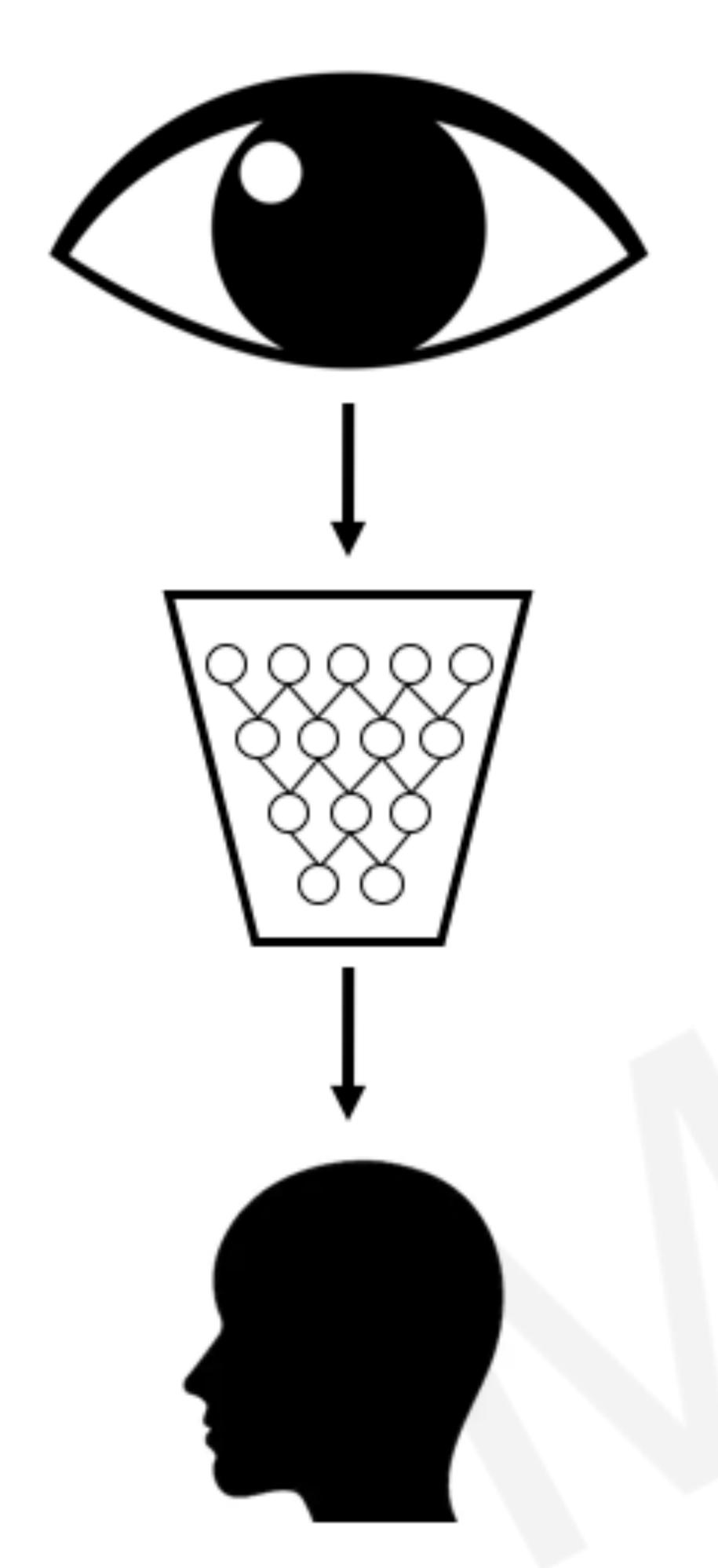
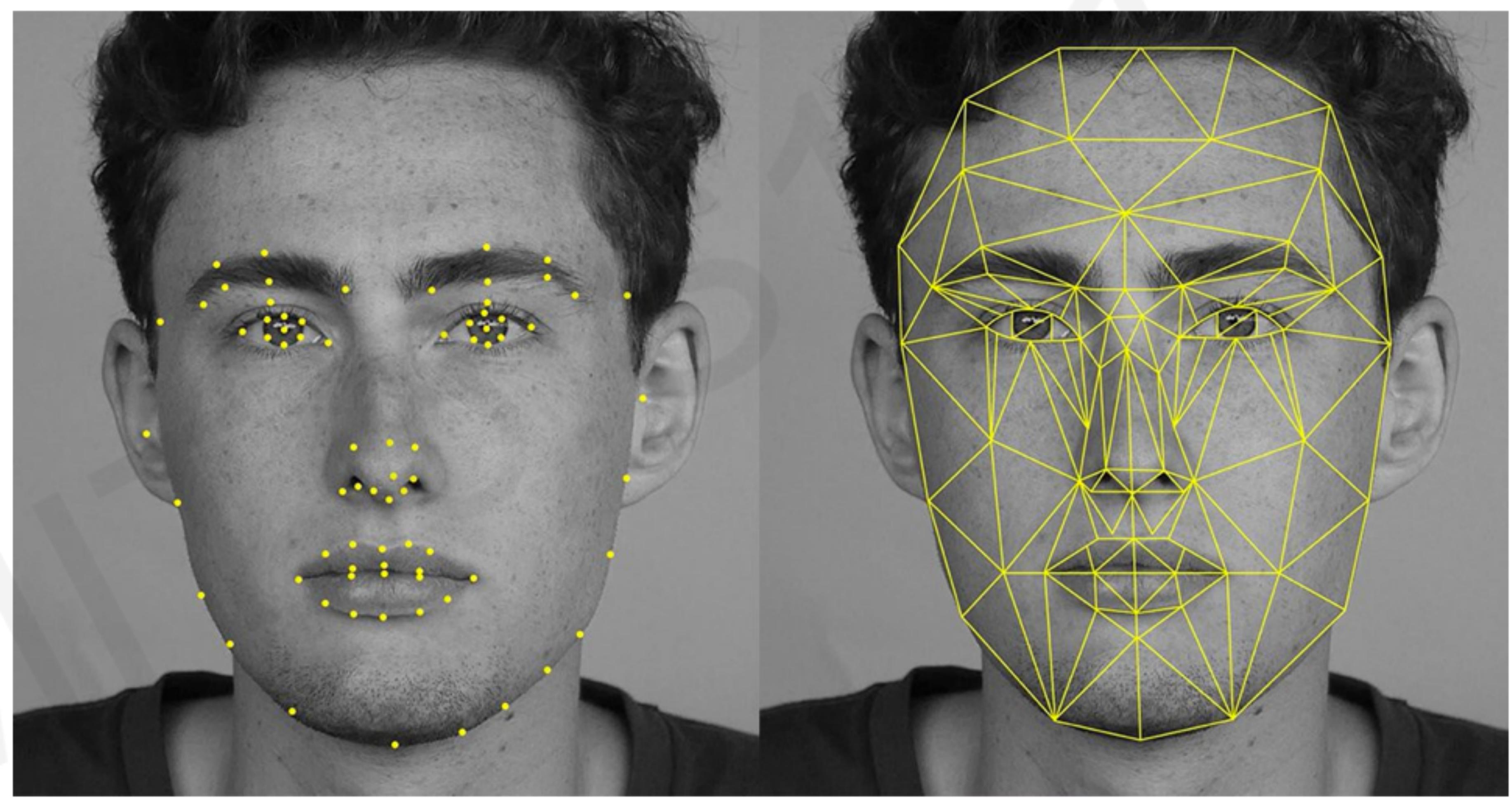


Deep Computer Vision

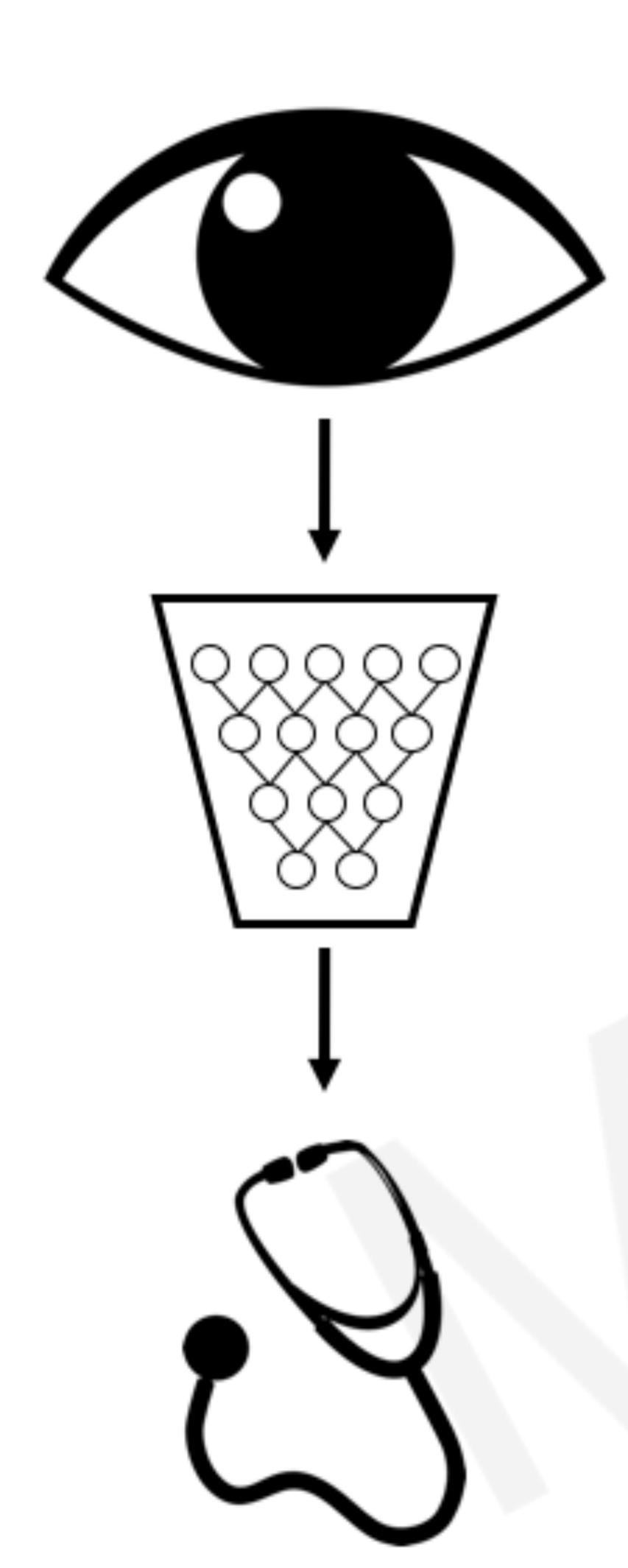
Alexander Amini MIT 6.S191 January 28, 2020

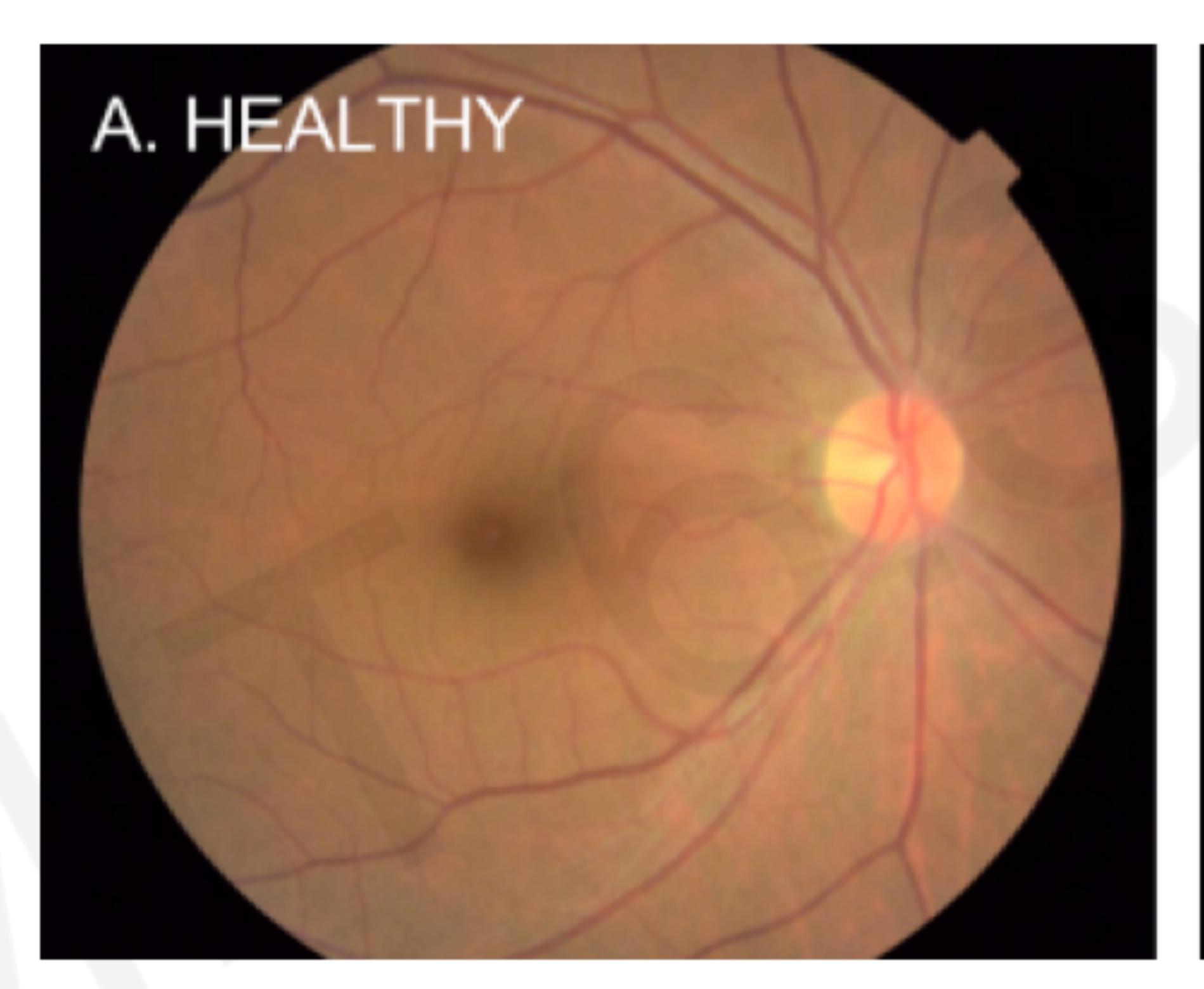
Impact: Facial Detection & Recognition



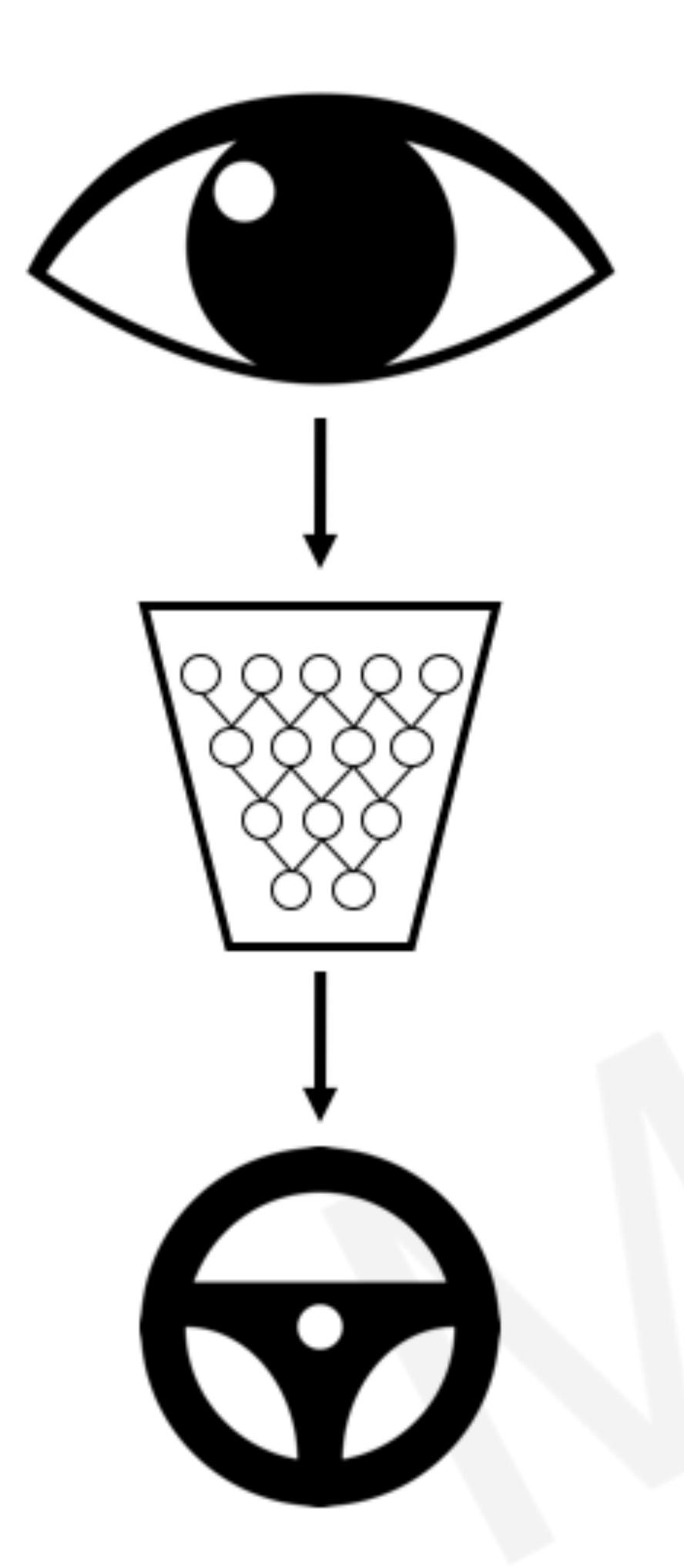


Impact: Medicine, Biology, Healthcare



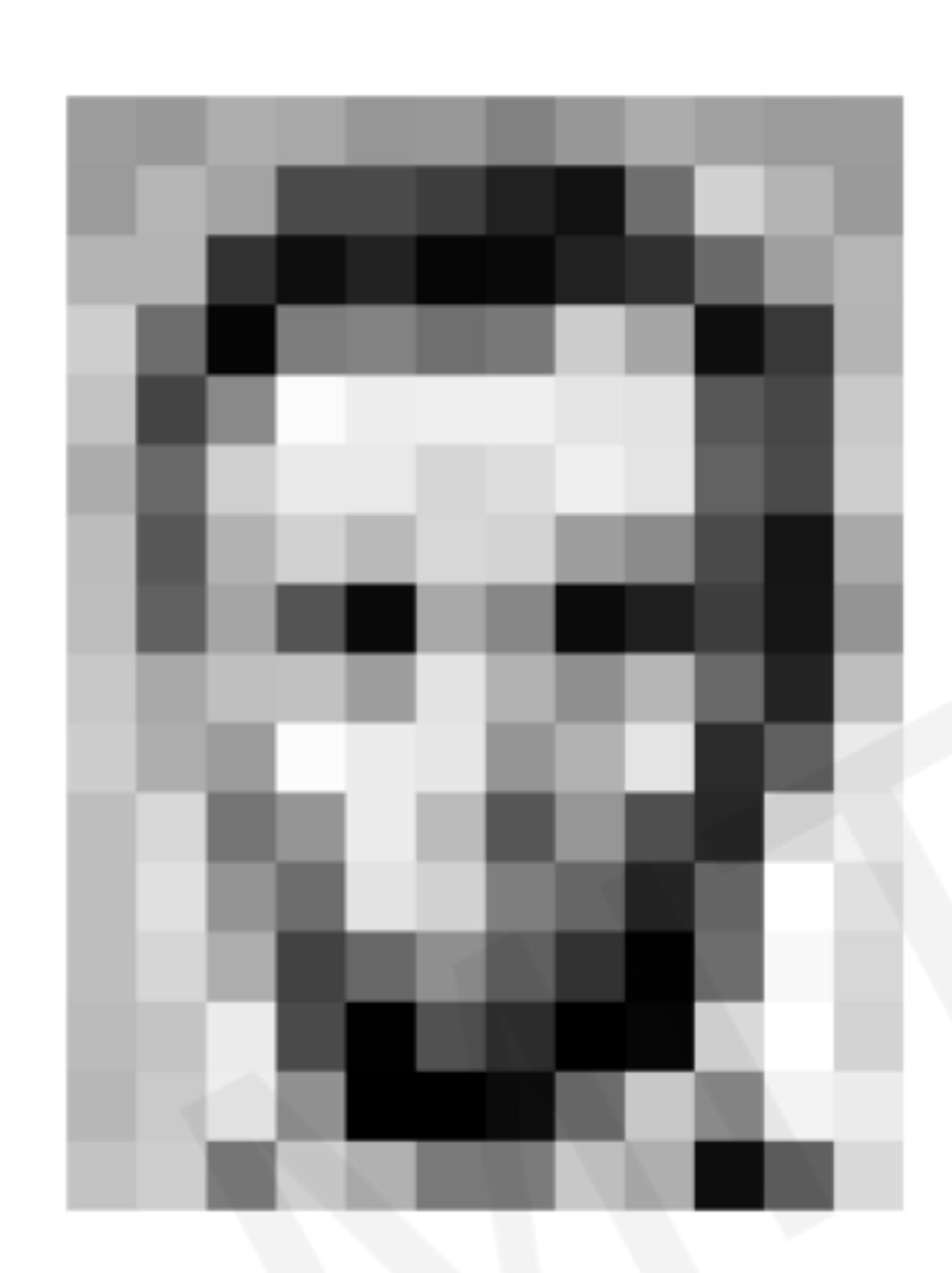


Impact: Self-Driving Cars



What Computers "See"

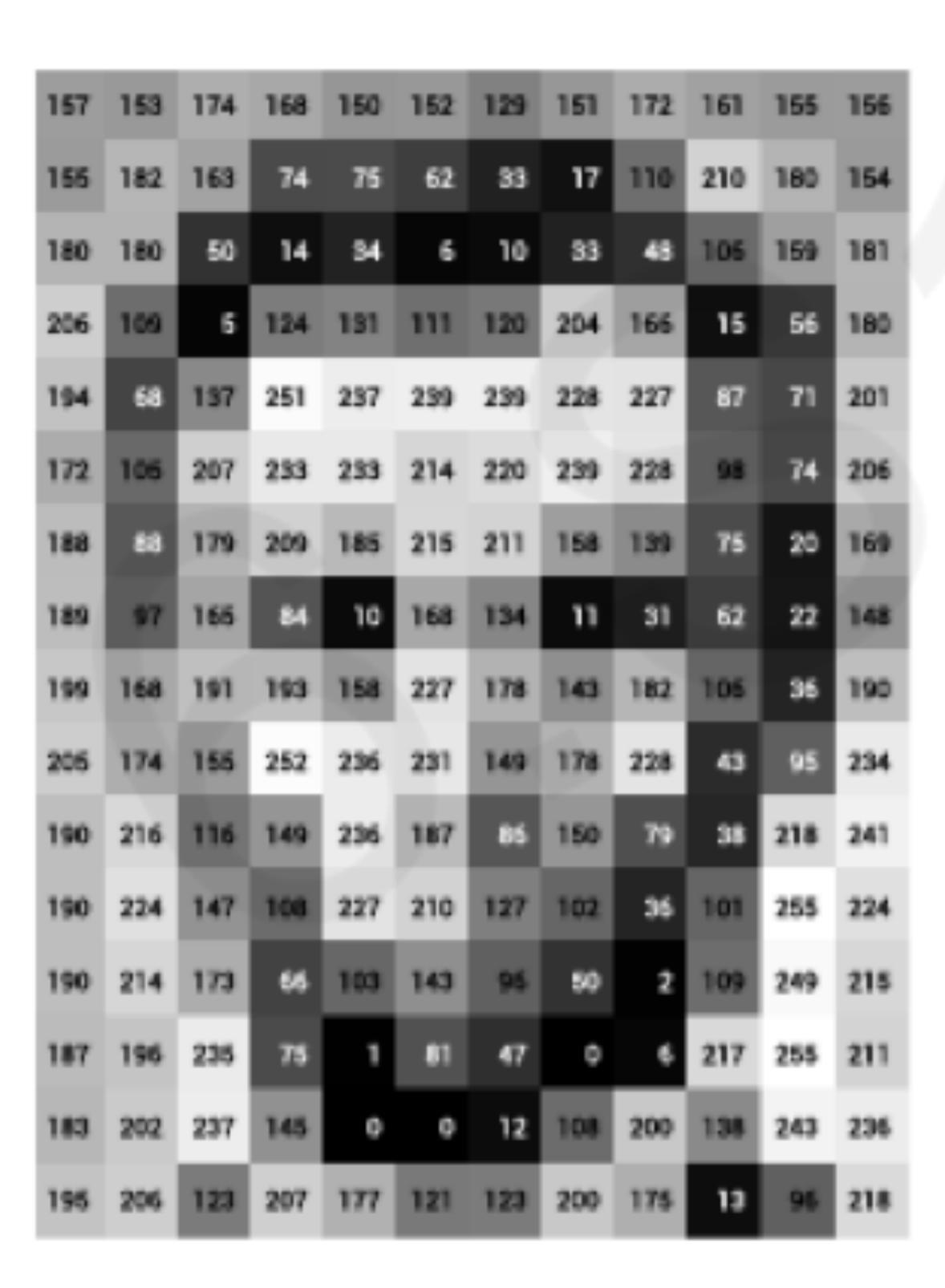
Images are Numbers



Images are Numbers

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

Images are Numbers

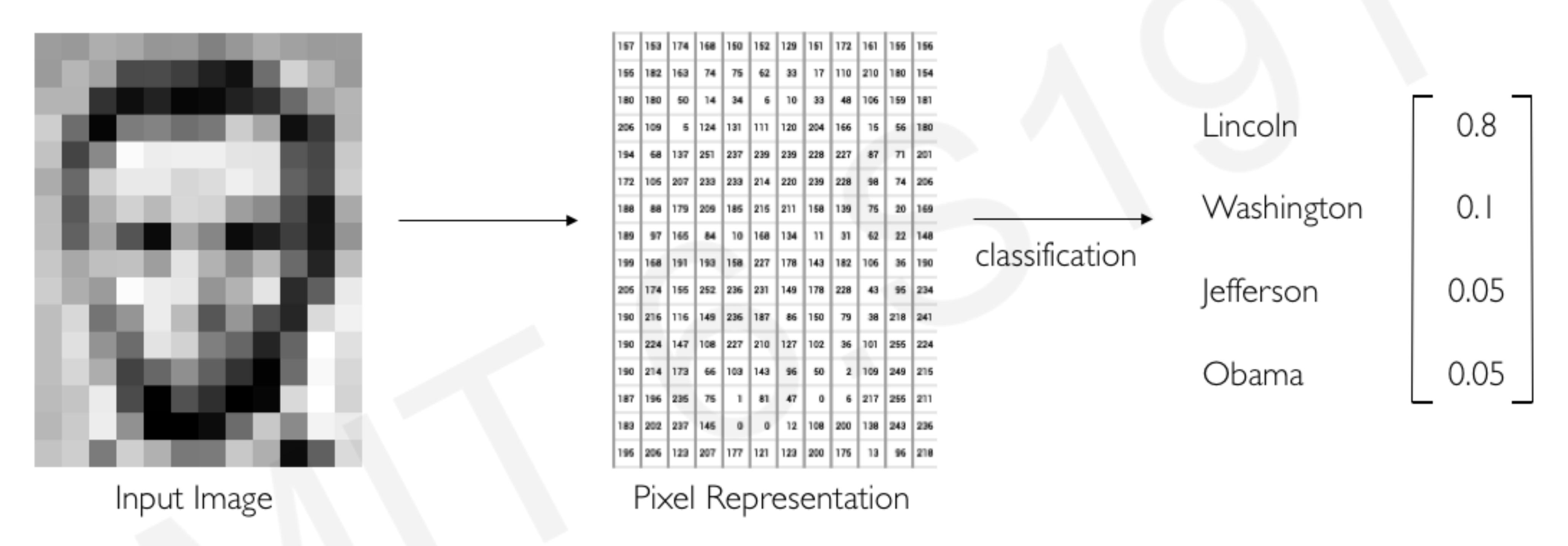


What the computer sees

157 153 174 168 150 152 129 151 172 161 156 156 182 163 74 76 62 33 17 110 210 180 180 180 50 14 34 6 10 33 48 106 159 206 109 5 124 131 111 120 204 166 15 56 194 68 137 251 237 239 239 228 227 87 71 172 105 207 233 233 214 220 239 228 98 74	154 181 180 201
180 180 50 14 34 6 10 33 48 106 159 206 109 5 124 131 111 120 204 166 15 56 194 68 137 251 237 239 239 228 227 87 71	181 180 201
206 109 5 124 131 111 120 204 166 15 56 194 68 137 251 237 239 239 228 227 87 71	180 201
194 68 137 251 237 239 239 228 227 87 71	201
172 105 207 233 233 214 220 239 228 98 74	206
188 88 179 209 186 215 211 158 139 75 20	169
189 97 165 84 10 168 134 11 31 62 22	148
199 168 191 193 158 227 178 143 182 106 36	190
205 174 155 252 236 231 149 178 228 43 95	234
190 216 116 149 236 187 86 150 79 38 218	241
190 224 147 108 227 210 127 102 36 101 256	224
190 214 173 66 103 143 96 50 2 109 249	215
187 196 235 75 1 81 47 0 6 217 255	211
183 202 237 145 0 0 12 108 200 138 243	236
196 206 123 207 177 121 123 200 176 13 96	218

An image is just a matrix of numbers [0,255]! i.e., 1080x1080x3 for an RGB image

Tasks in Computer Vision



- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class

High Level Feature Detection

Let's identify key features in each image category

Nose, Eyes, Mouth

Wheels, License Plate, Headlights

Door, Windows, Steps

Manual Feature Extraction

Domain knowledge

Define features

Detect features to classify

Problems?

Manual Feature Extraction

Domain knowledge

Define features

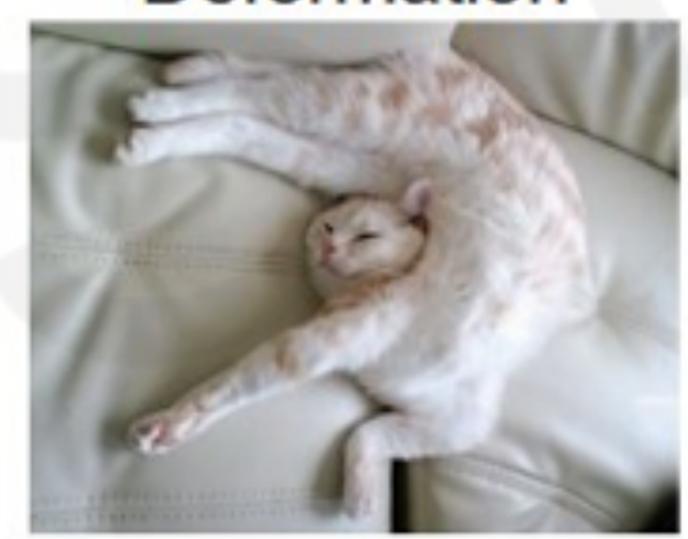
Detect features to classify

Viewpoint variation

Illumination conditions

Scale variation

Deformation



Occlusion

Intra-class variation

Manual Feature Extraction

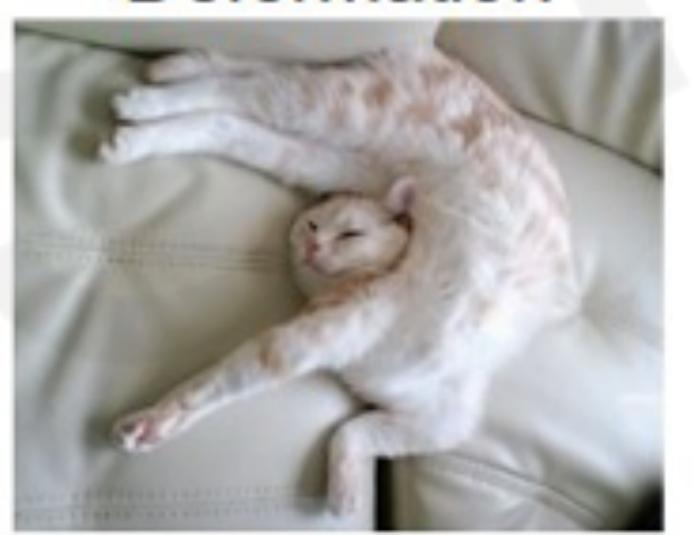
Detect features to classify

Viewpoint variation

Illumination conditions

Scale variation

Deformation



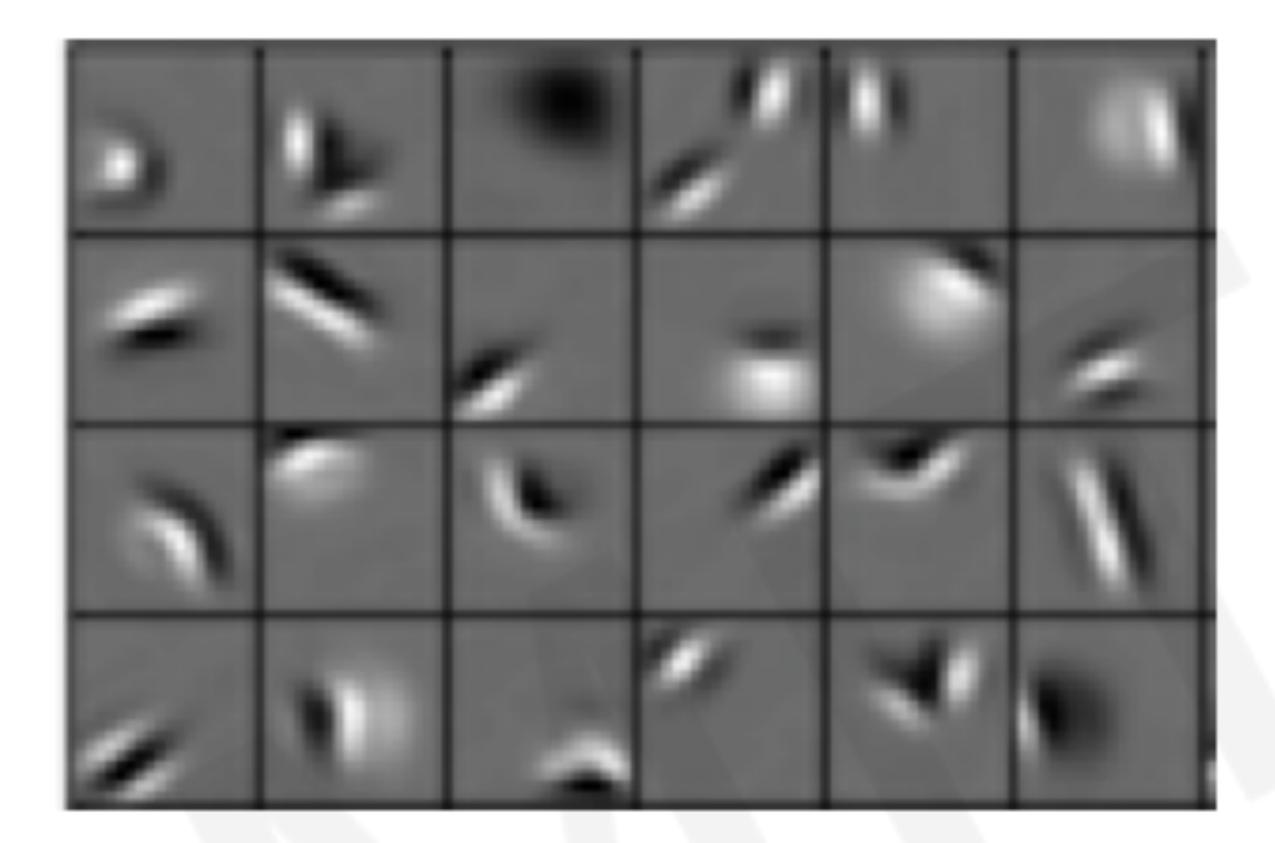
Occlusion

Intra-class variation

Learning Feature Representations

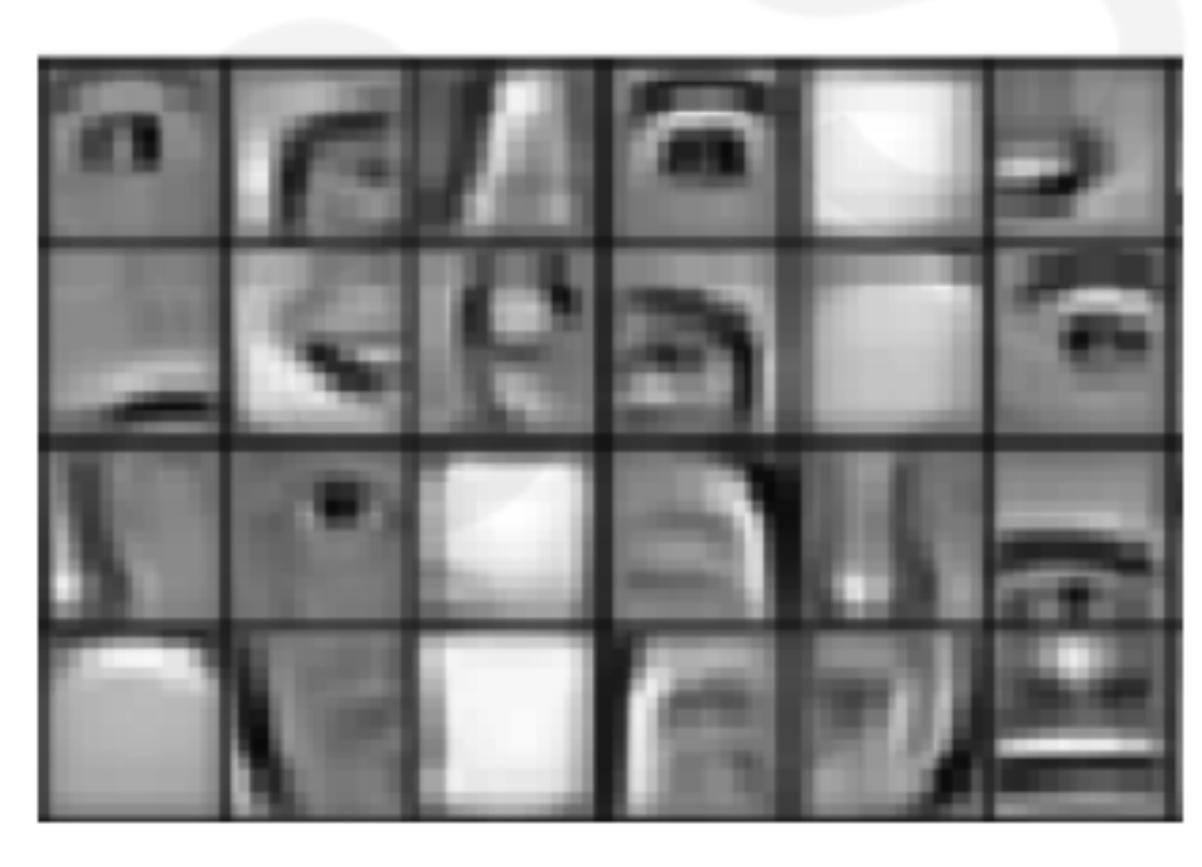
Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features



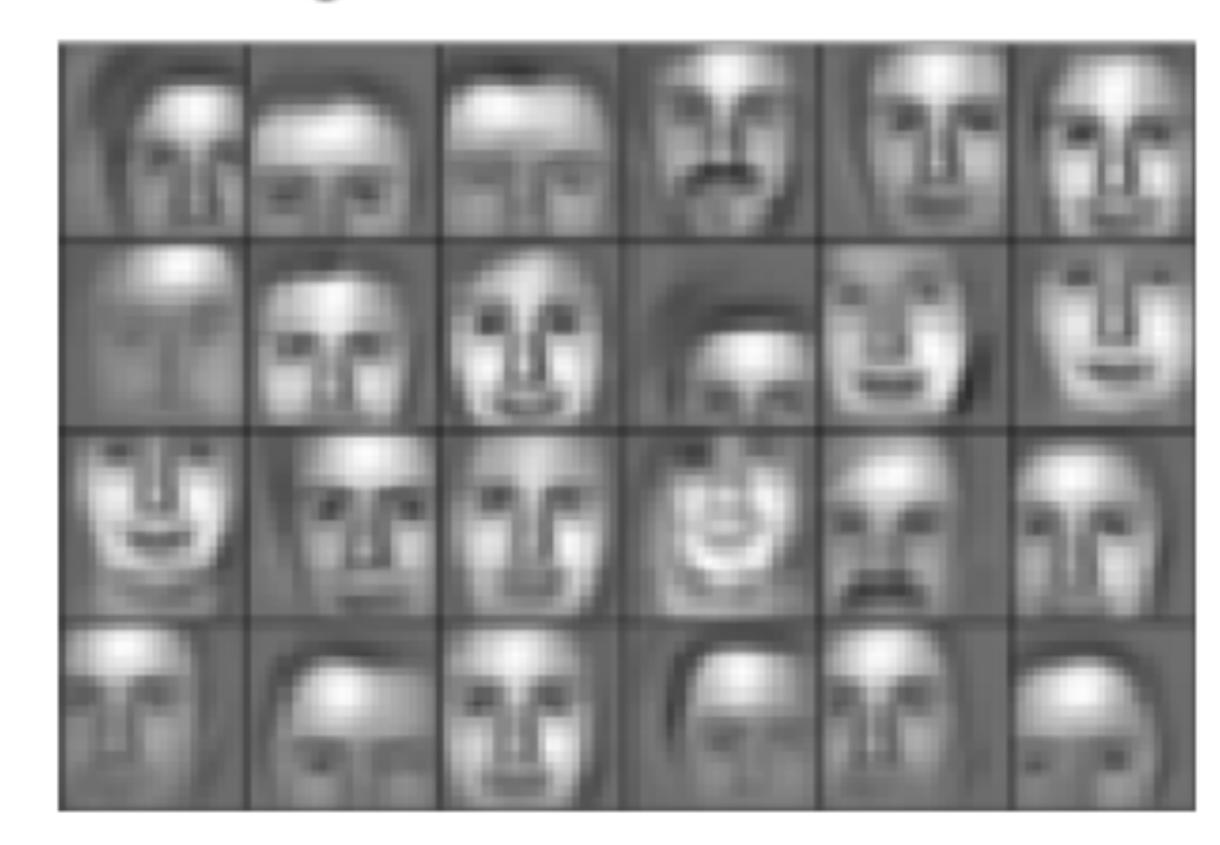
Edges, dark spots

Mid level features



Eyes, ears, nose

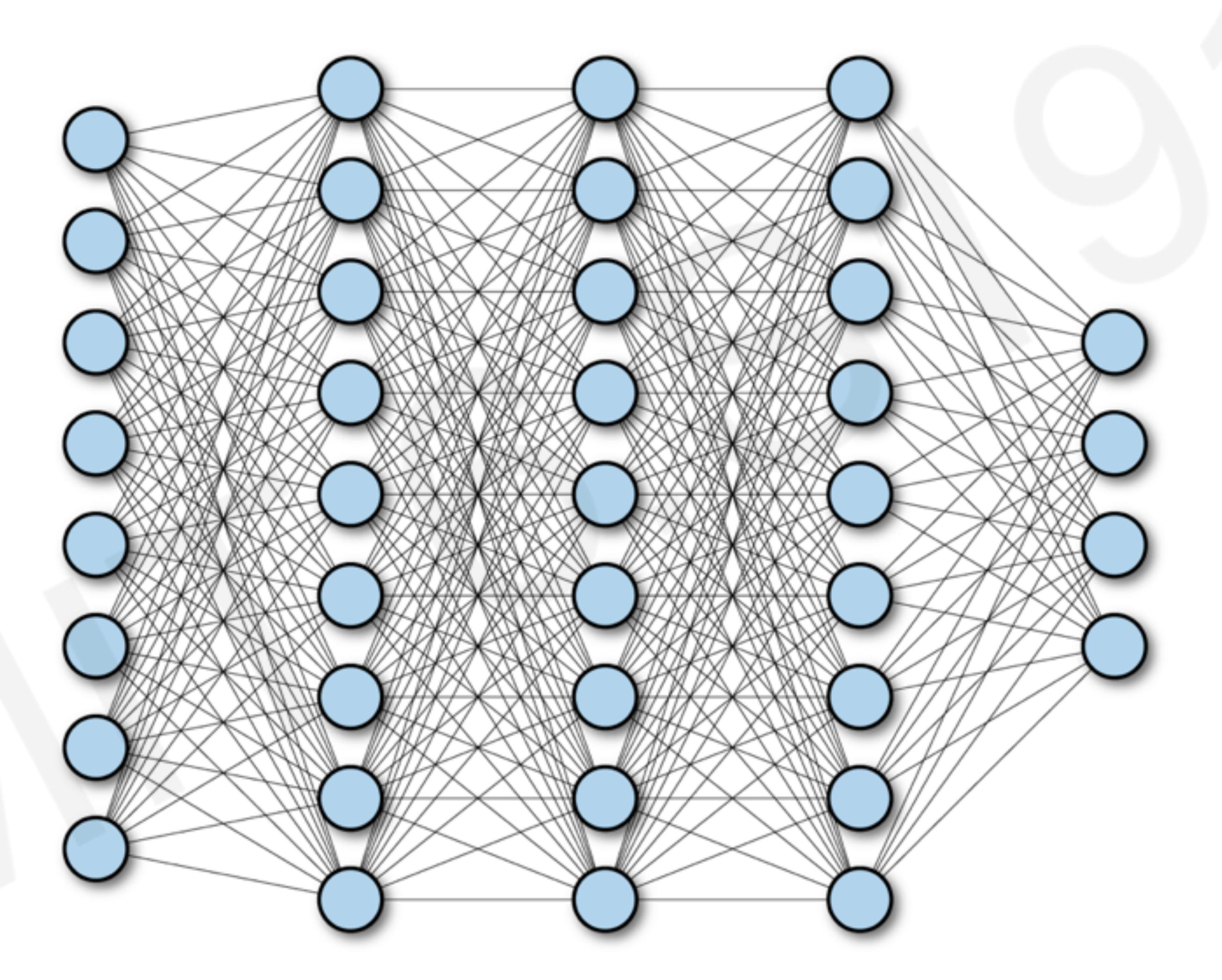
High level features



Facial structure

Learning Visual Features

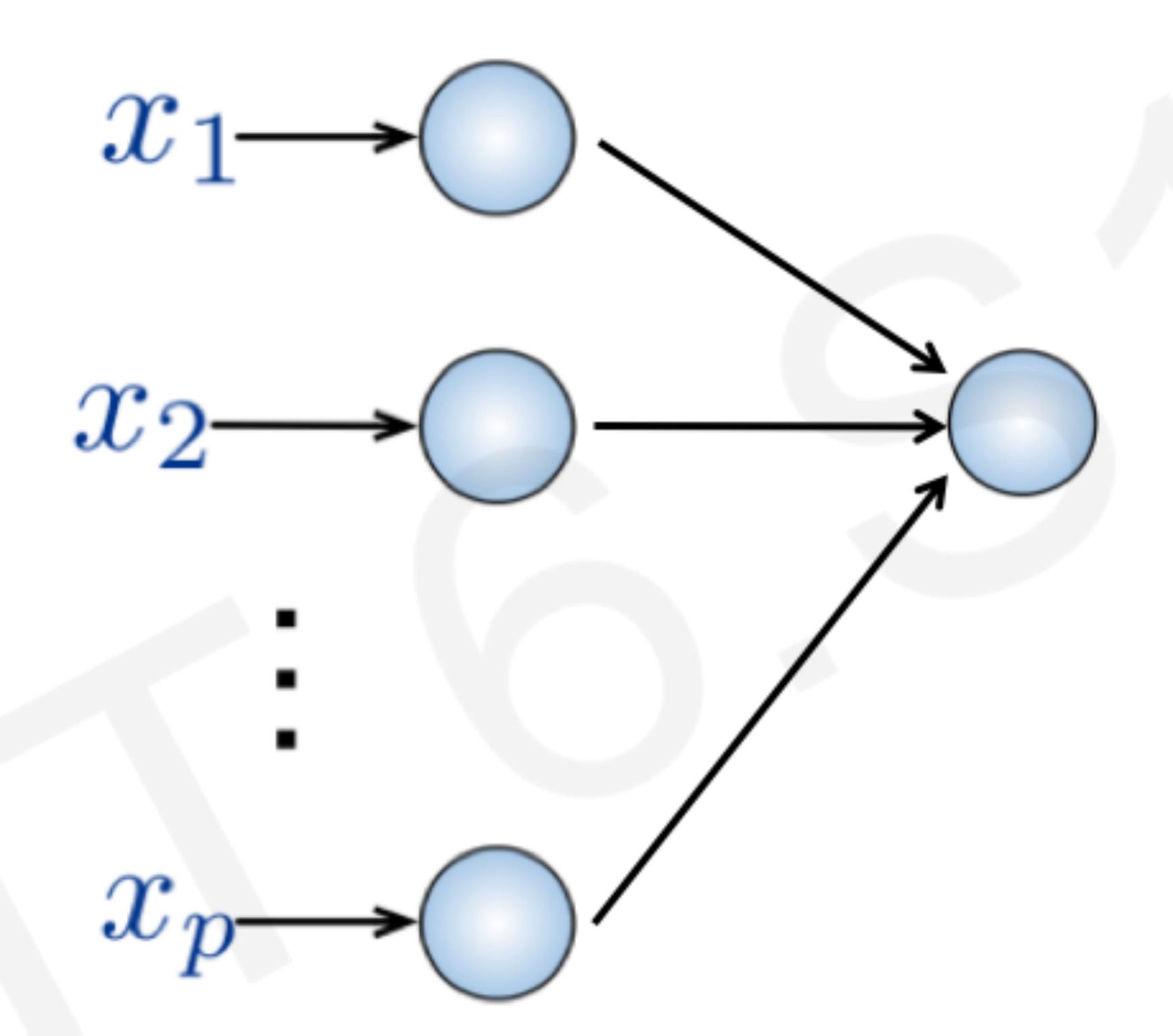
Fully Connected Neural Network



Fully Connected Neural Network

Input:

- 2D image
- Vector of pixel values



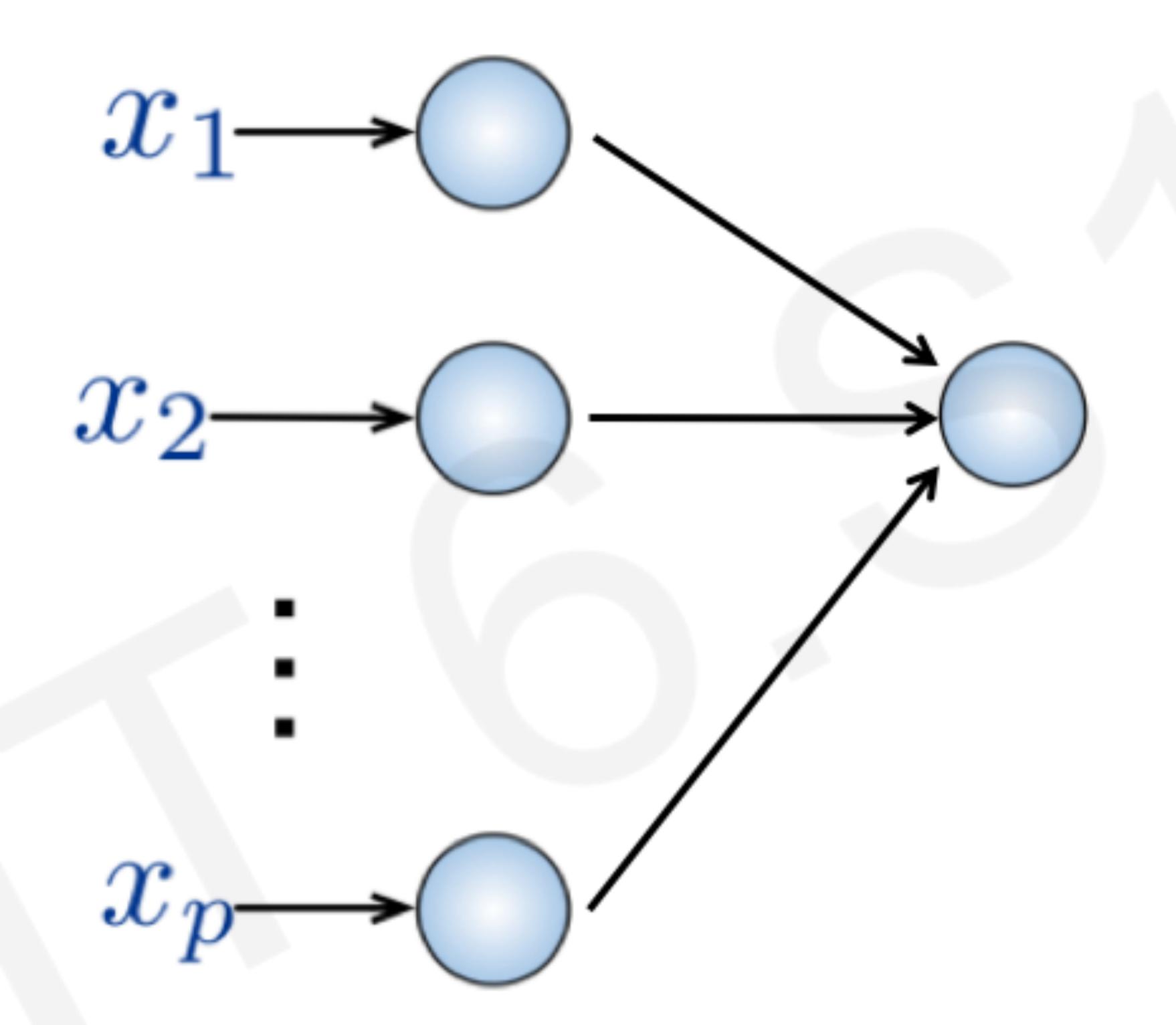
Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

Fully Connected Neural Network

Input:

- 2D image
- Vector of pixel values



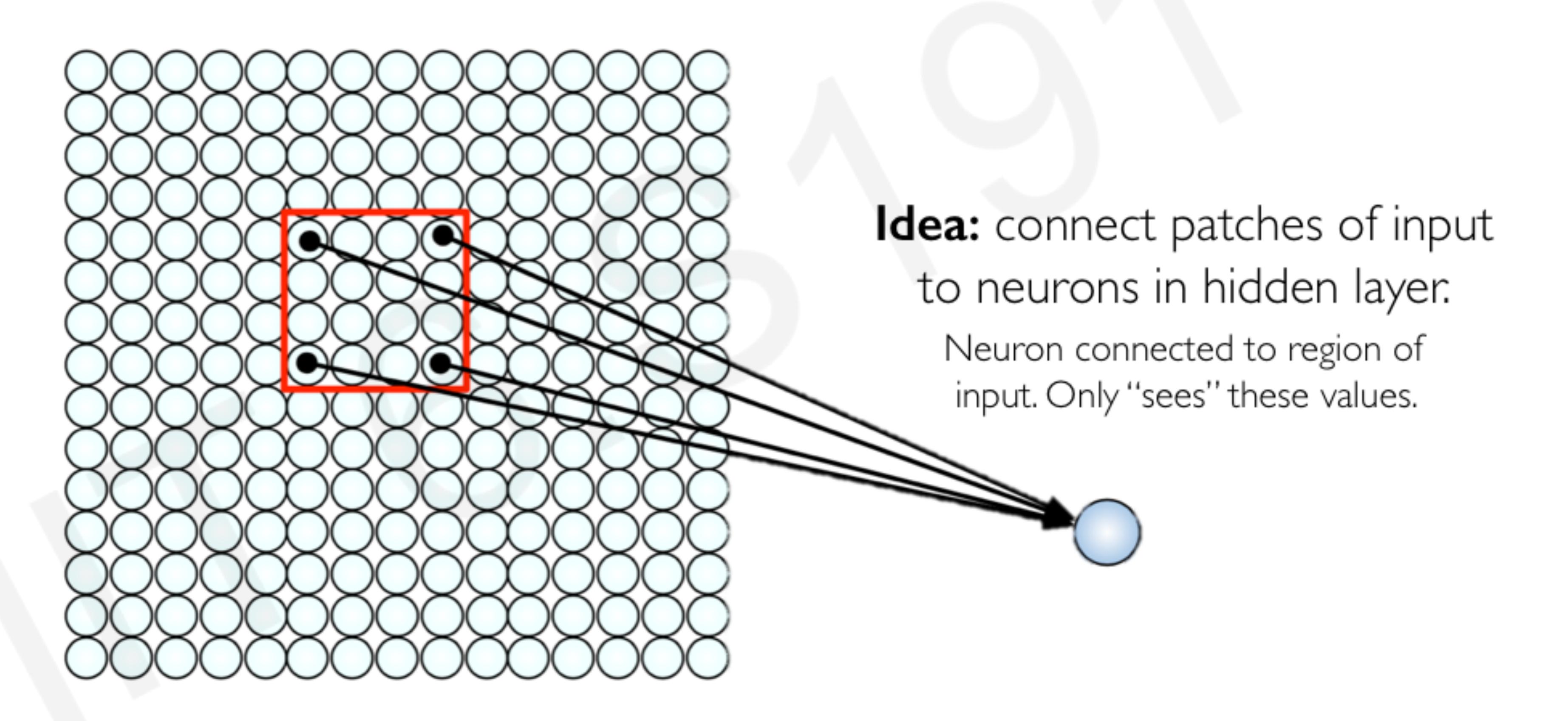
Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

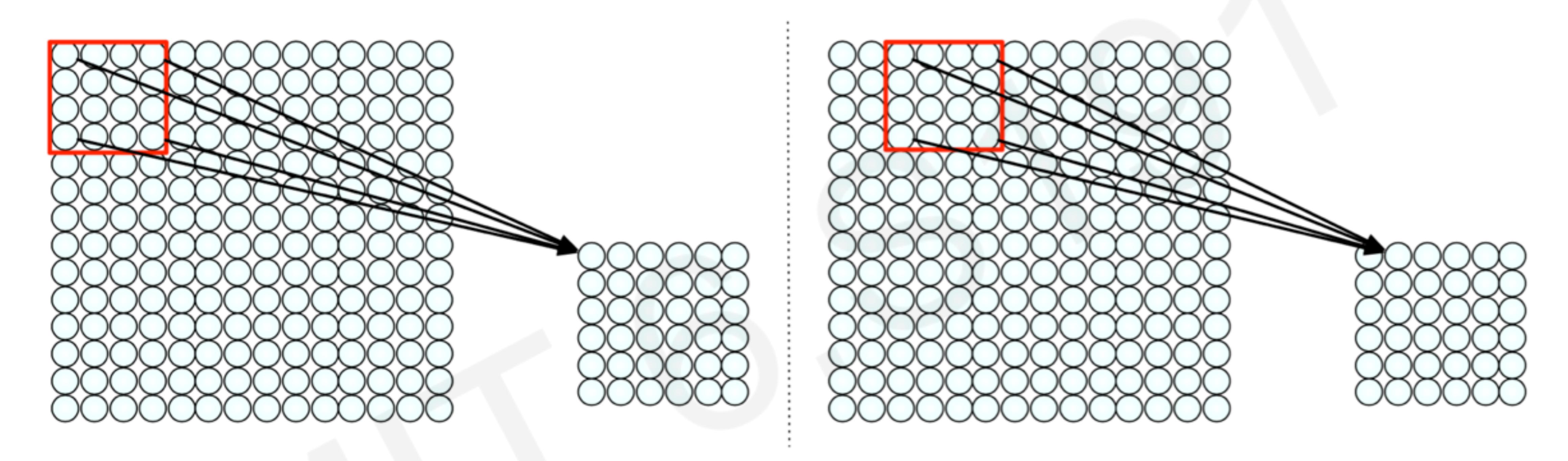
How can we use **spatial structure** in the input to inform the architecture of the network?

Using Spatial Structure

Input: 2D image. Array of pixel values



Using Spatial Structure



Connect patch in input layer to a single neuron in subsequent layer.

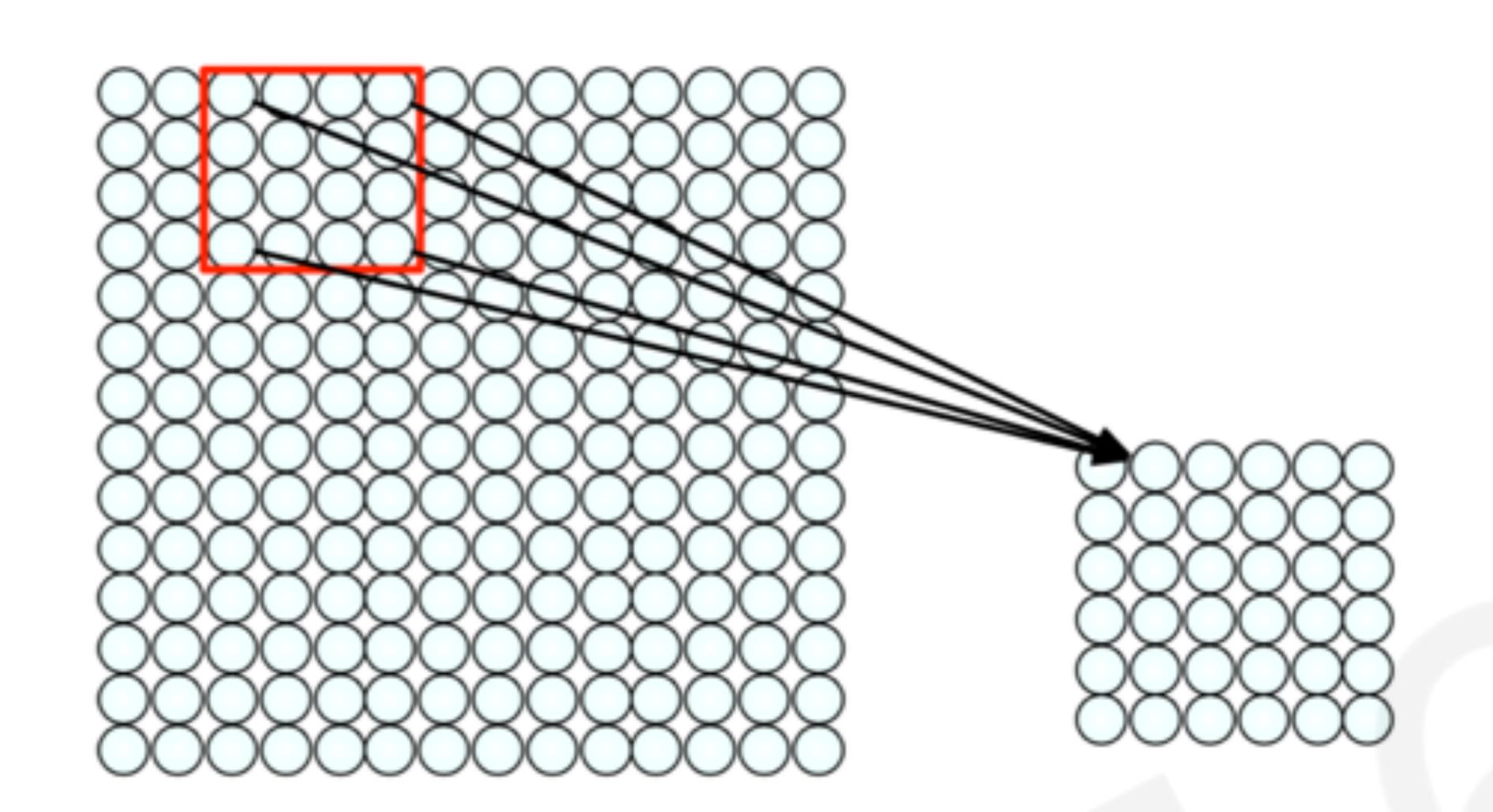
Use a sliding window to define connections.

How can we weight the patch to detect particular features?

Applying Filters to Extract Features

- 1) Apply a set of weights a filter to extract **local features**
 - 2) Use multiple filters to extract different features
 - 3) Spatially **share** parameters of each filter (features that matter in one part of the input should matter elsewhere)

Feature Extraction with Convolution



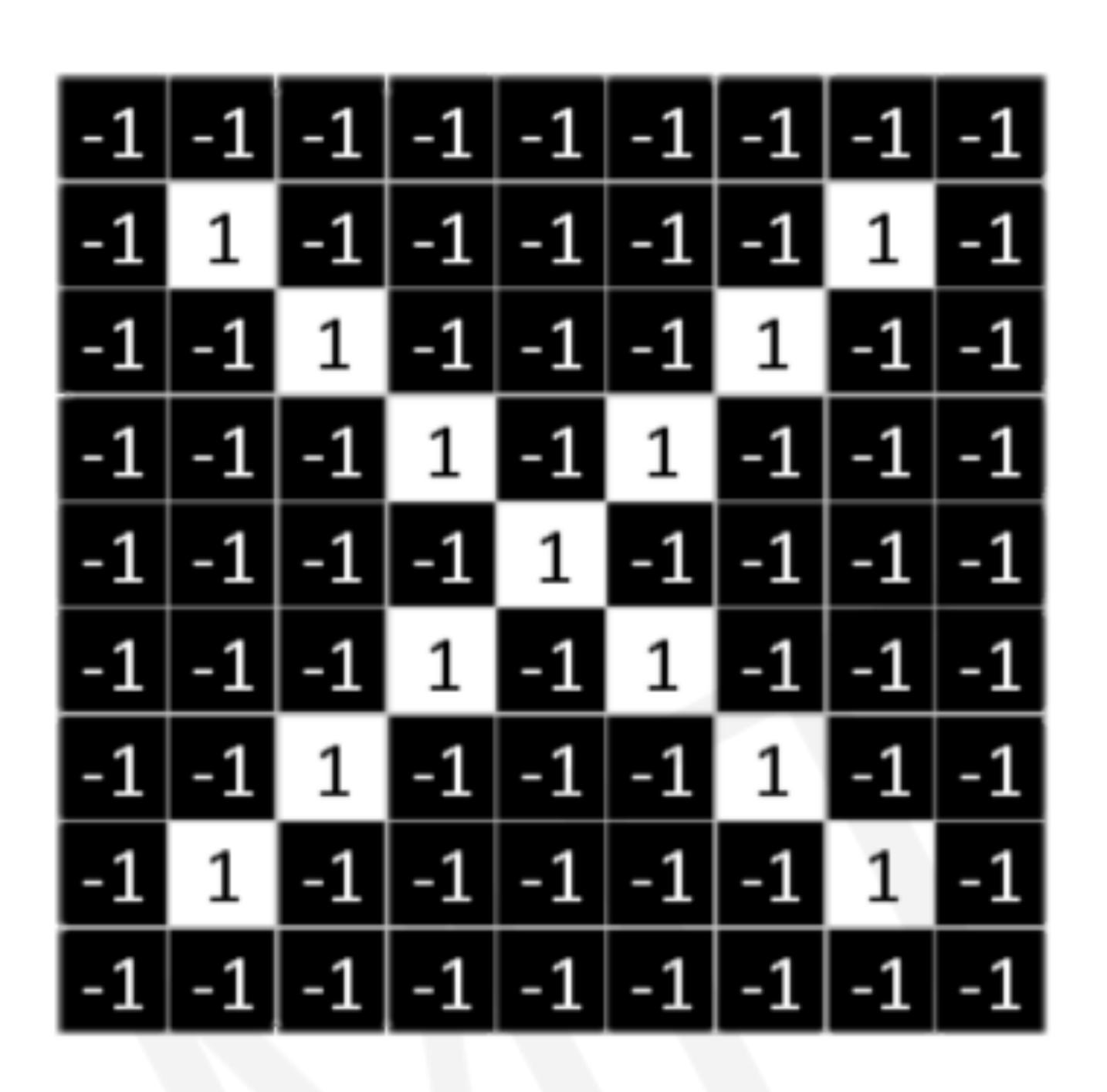
- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is convolution

- 1) Apply a set of weights a filter to extract local features
 - 2) Use multiple filters to extract different features
 - 3) Spatially share parameters of each filter

Feature Extraction and Convolution A Case Study

XorX?



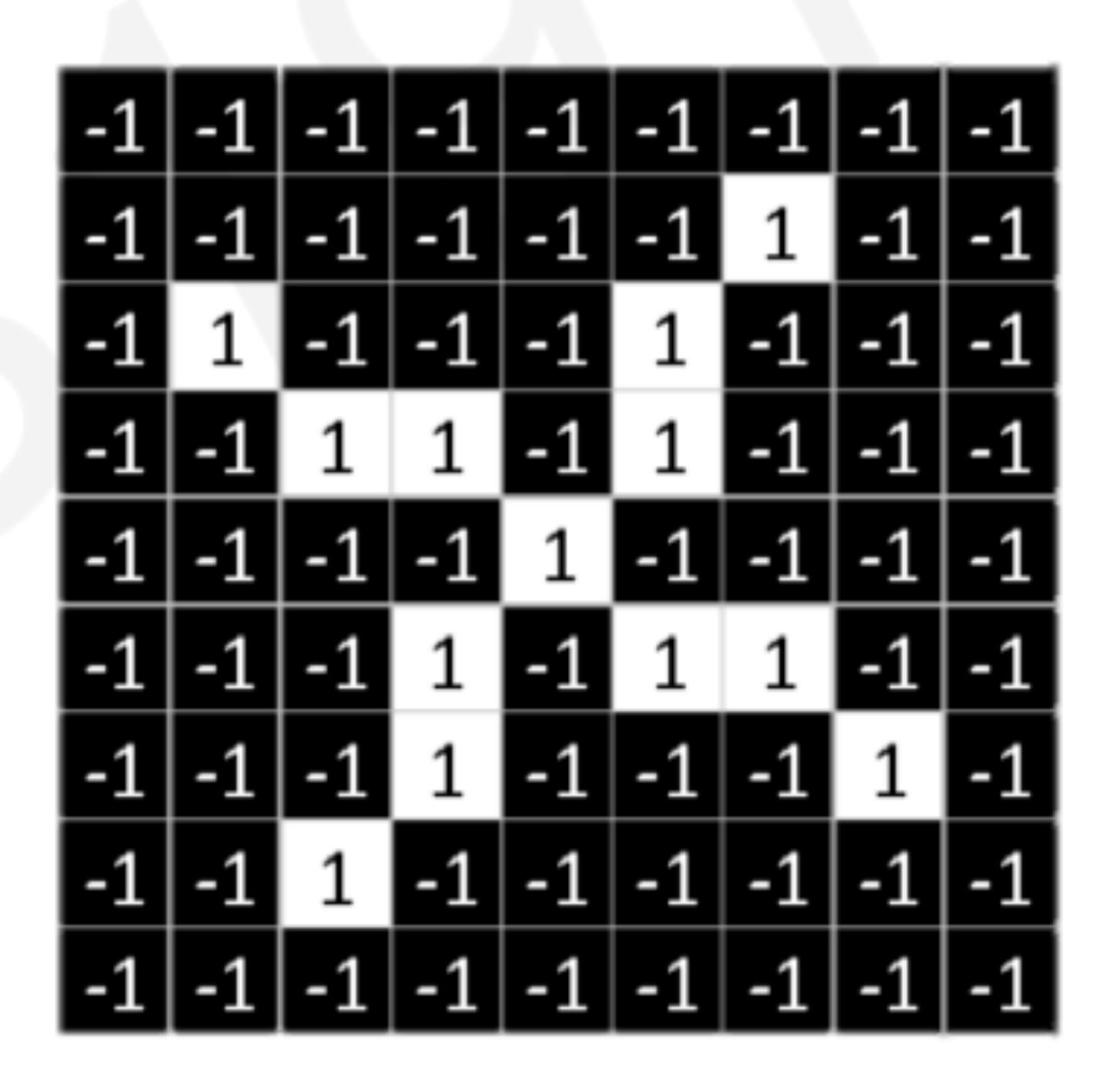
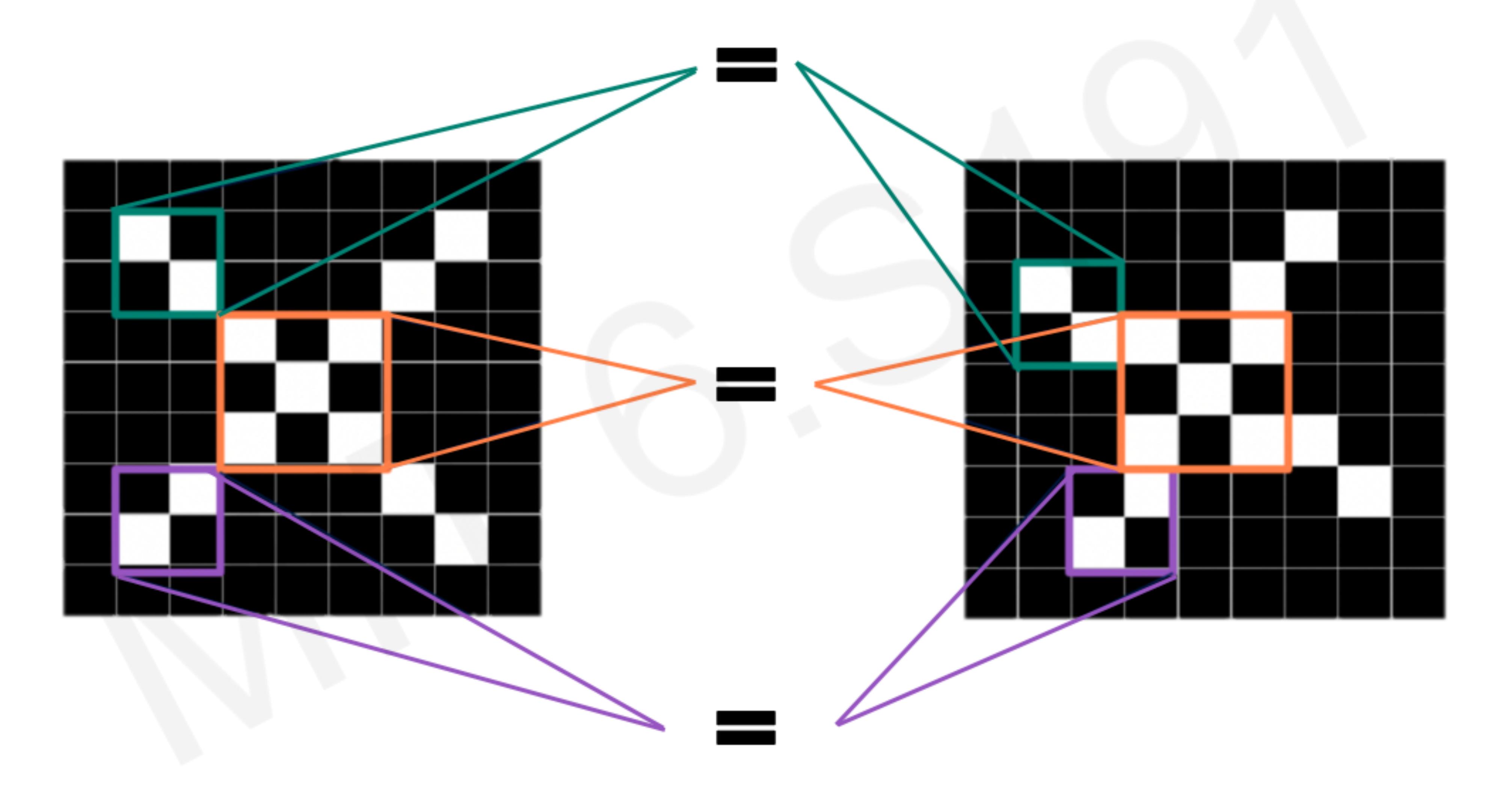
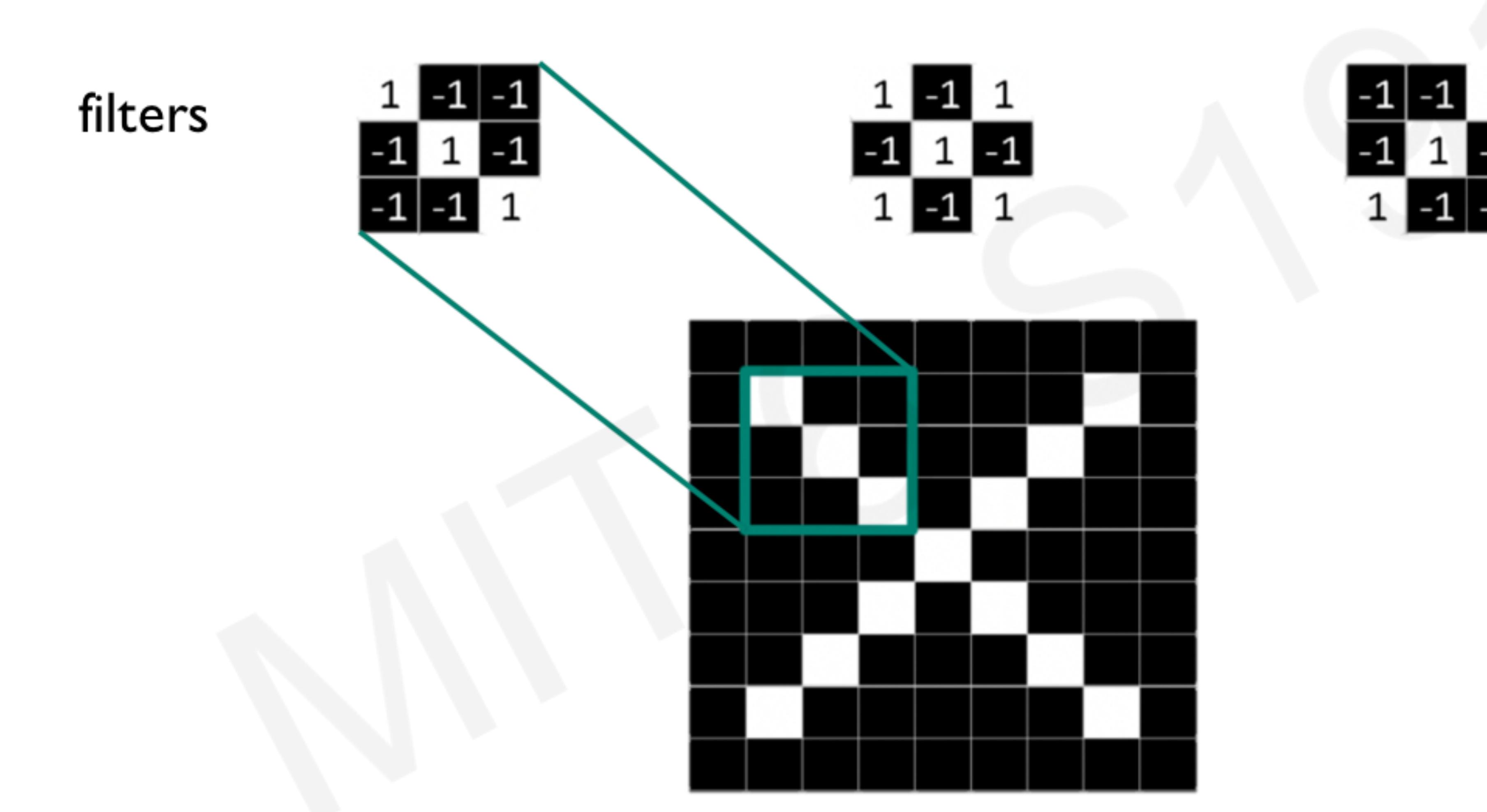


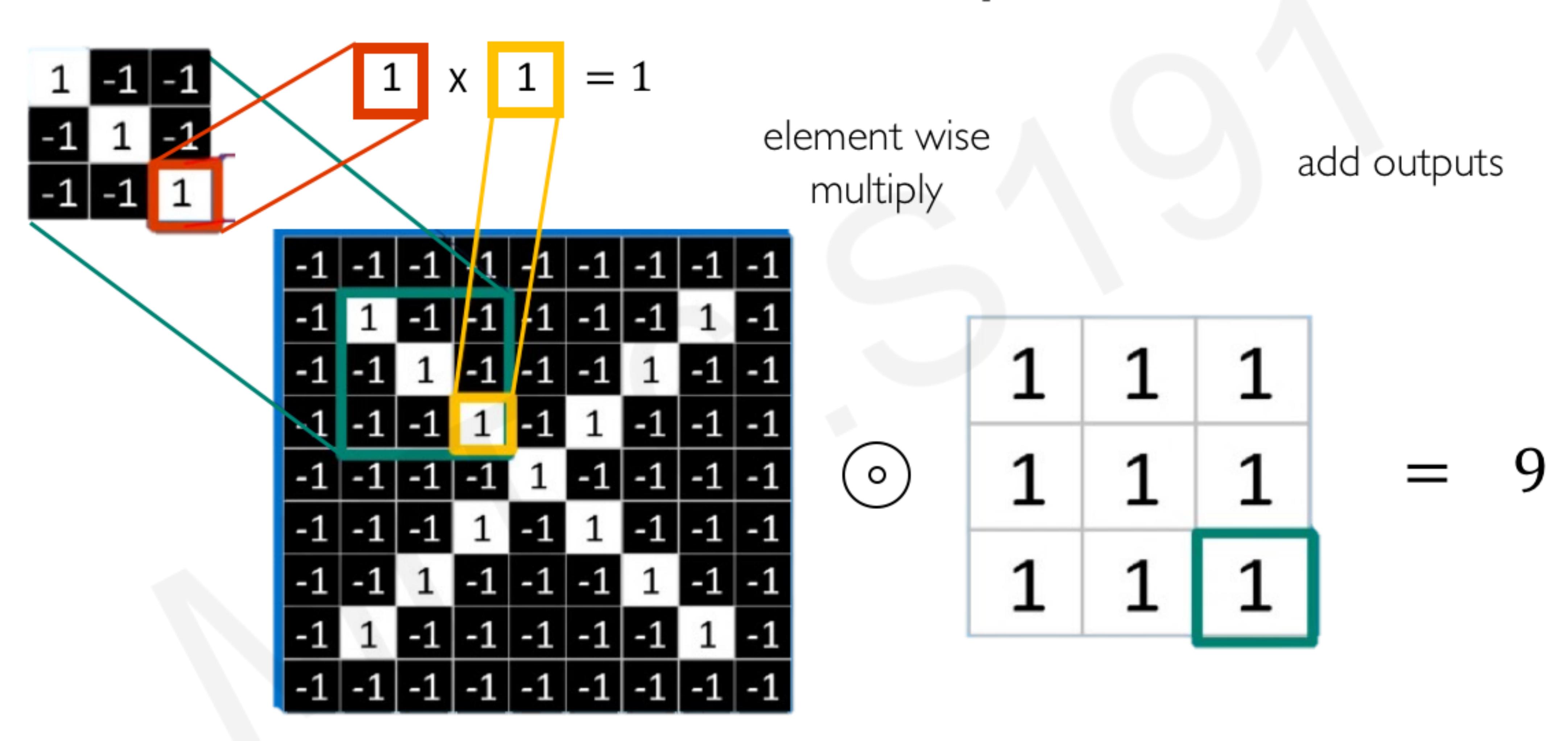
Image is represented as matrix of pixel values... and computers are literal! We want to be able to classify an X as an X even if it's shifted, shrunk, rotated, deformed.

Features of X

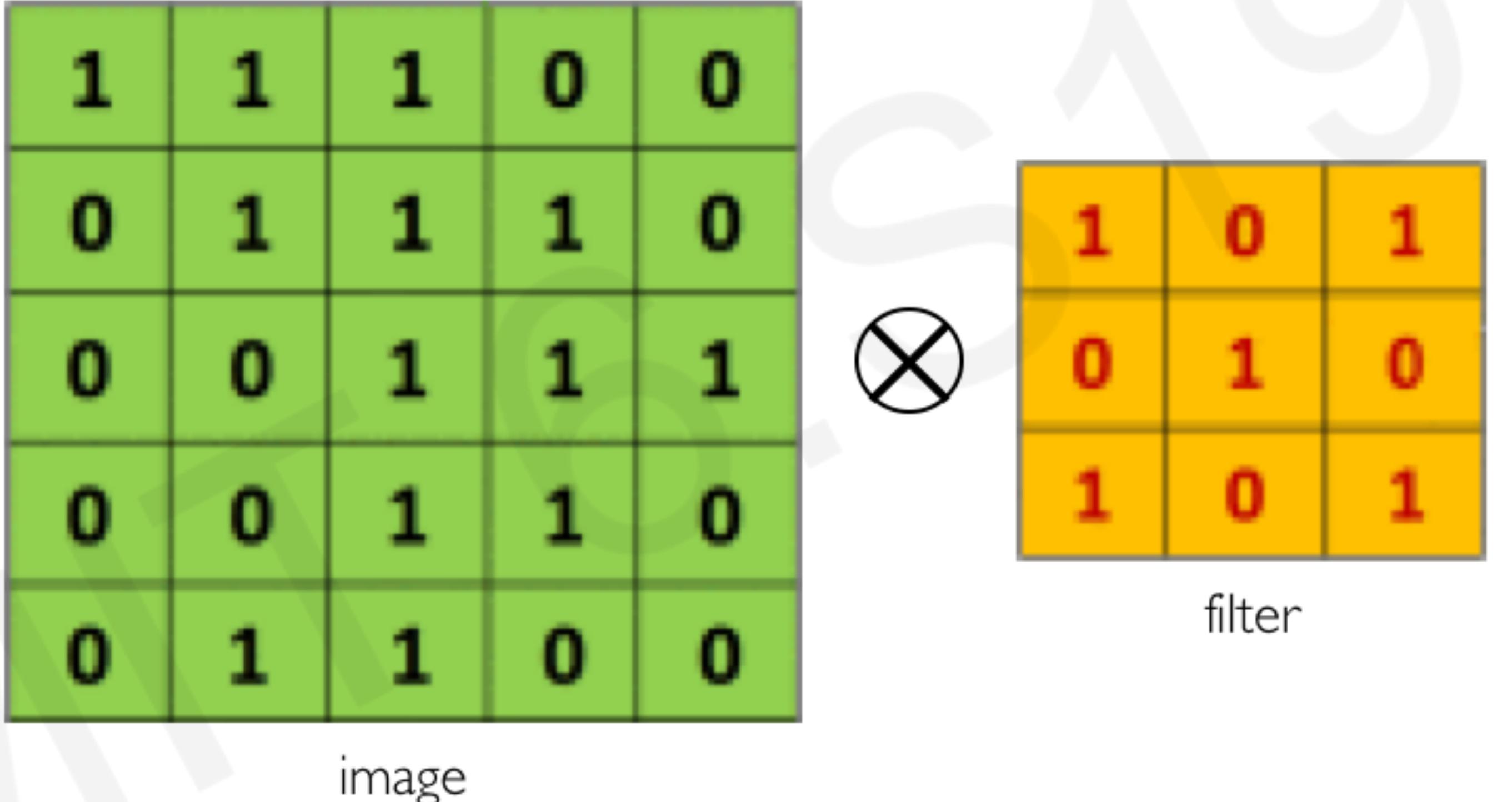


Filters to Detect X Features



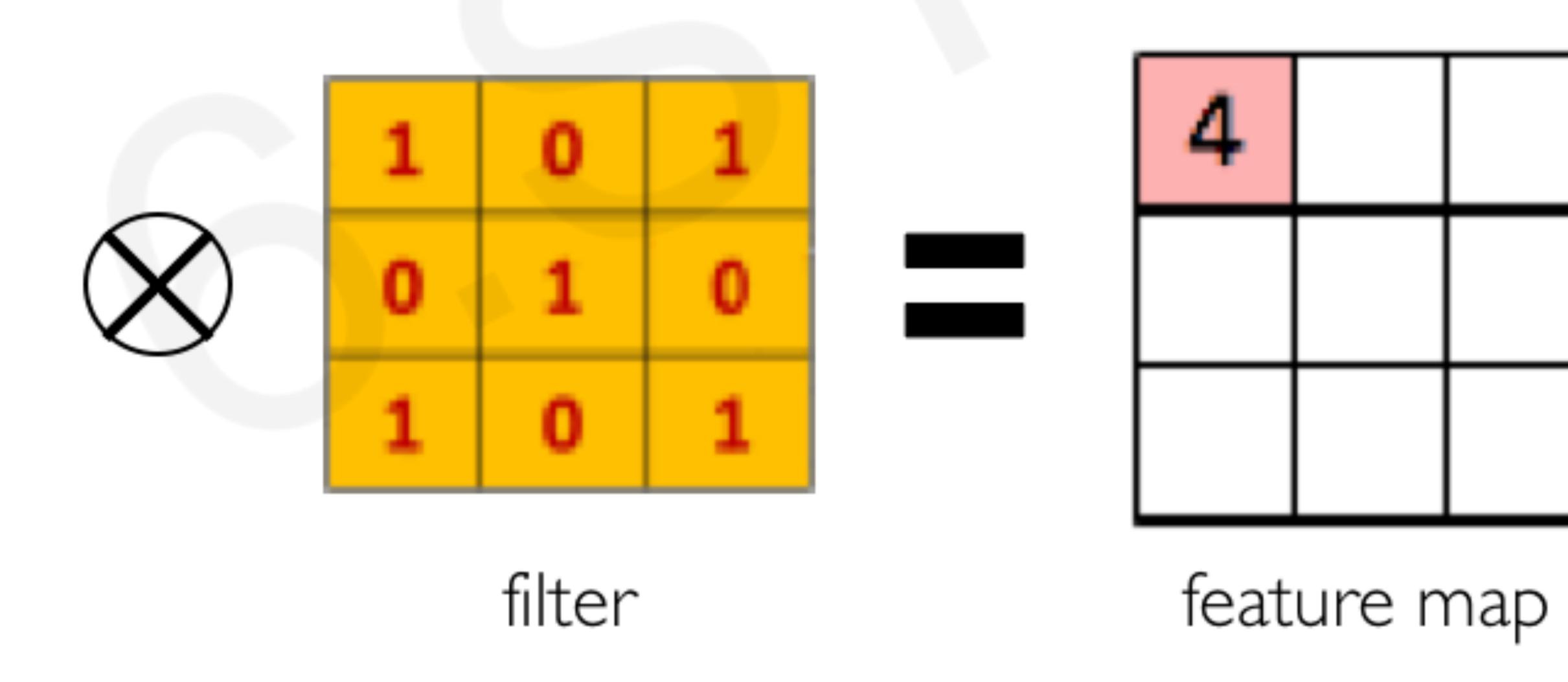


Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter:

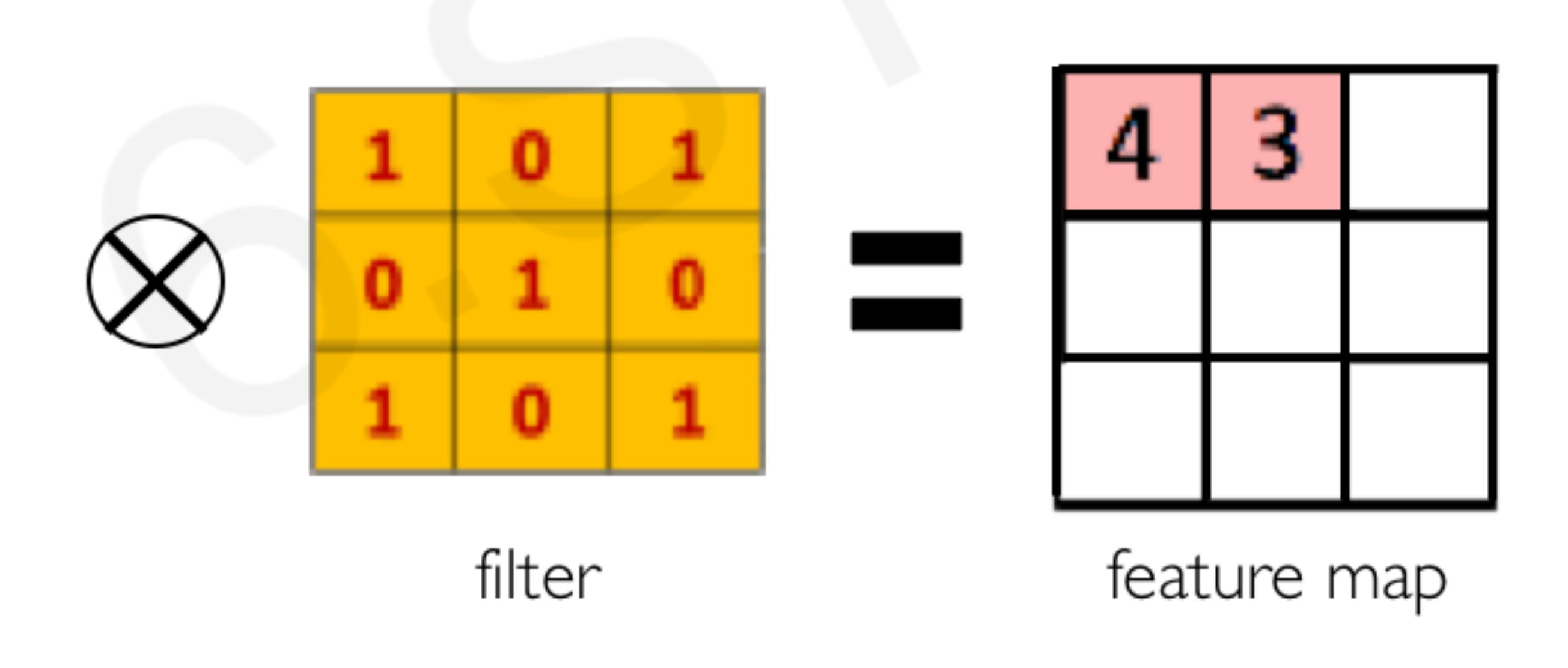


IIIIage

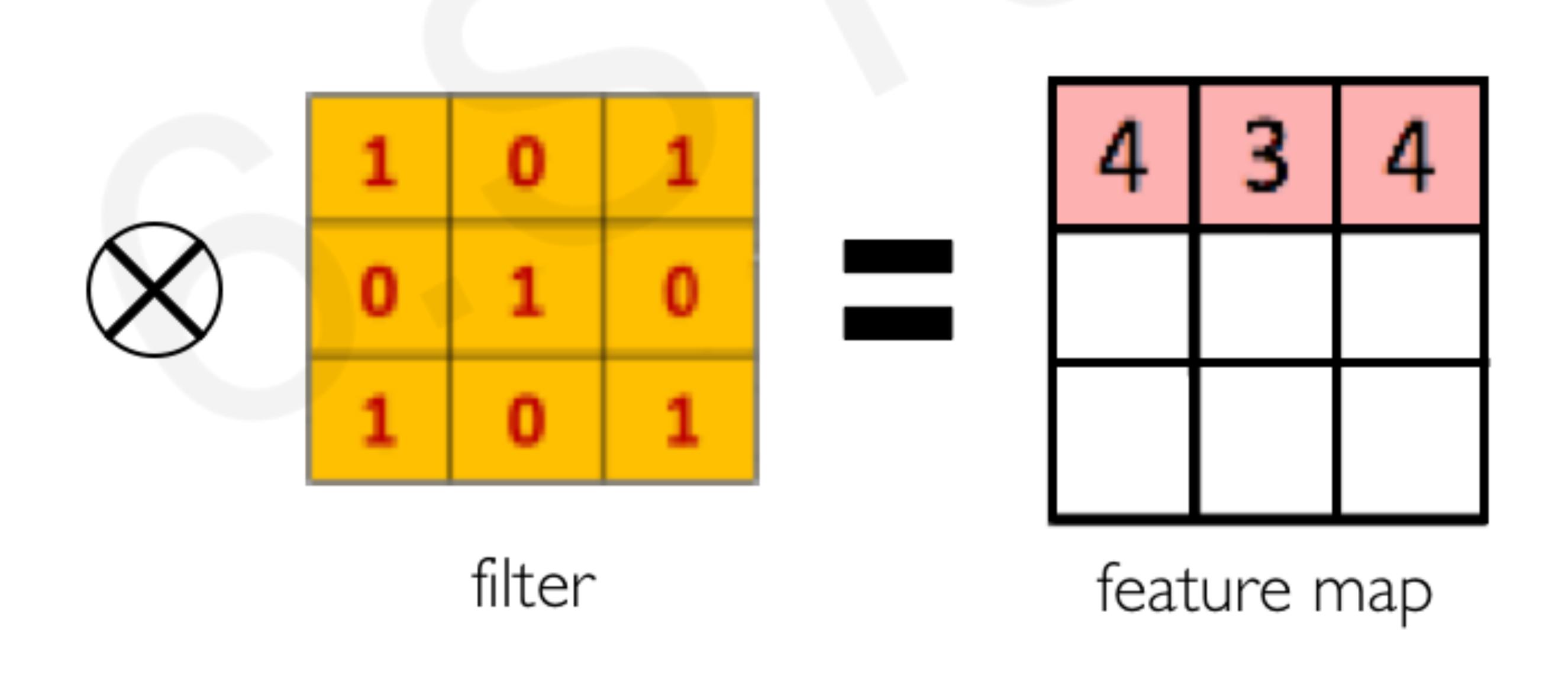
1	1	1	0	0
0,0	1	1	1	0
0	Q	1	1	1
0	0	1	1	0
0	1	1	0	0



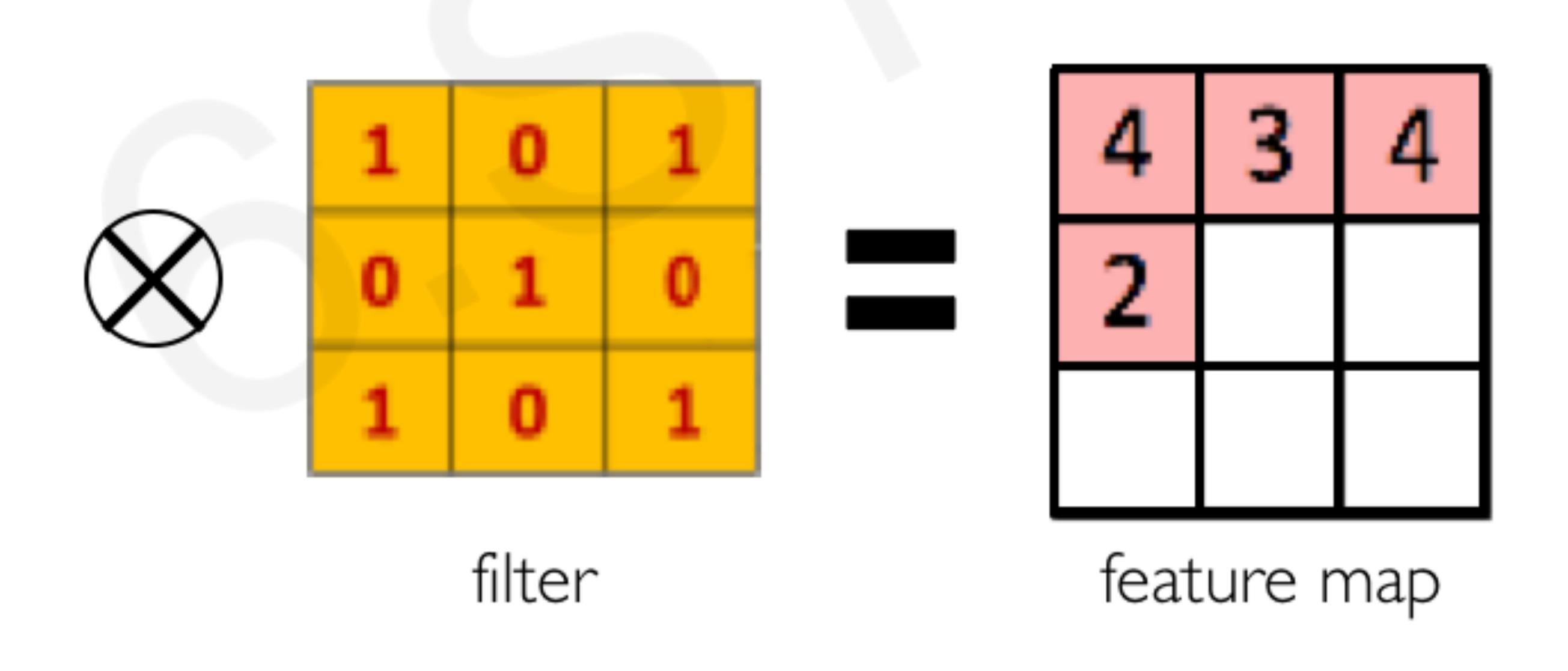
1	1	1.0	Q	0
0	1,8	1	1	0
0	Q	1.0	1	1
0	0	1	1	0
0	1	1	0	0



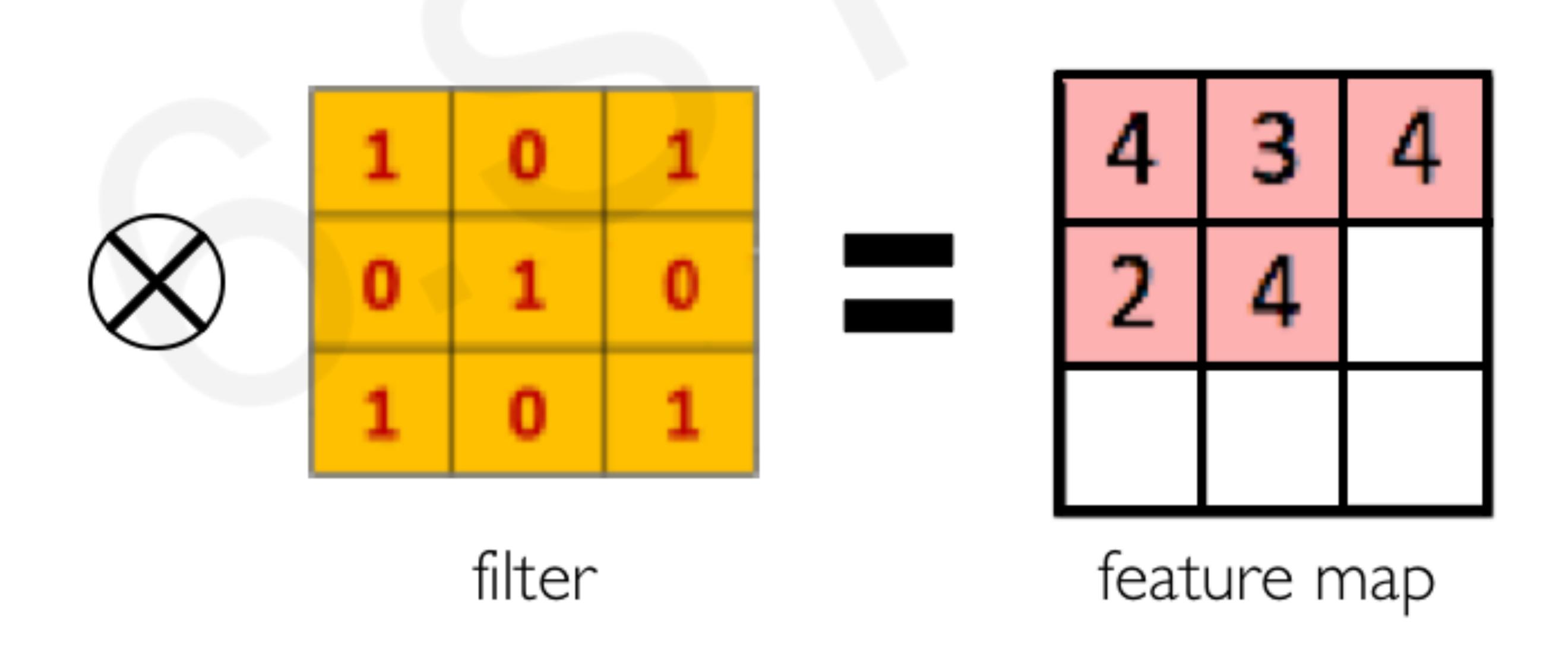
1	1	1	0,0	Q
0	1	1	4	Q
0	0	1	1.0	1
0	0	1	1	0
0	1	1	0	0



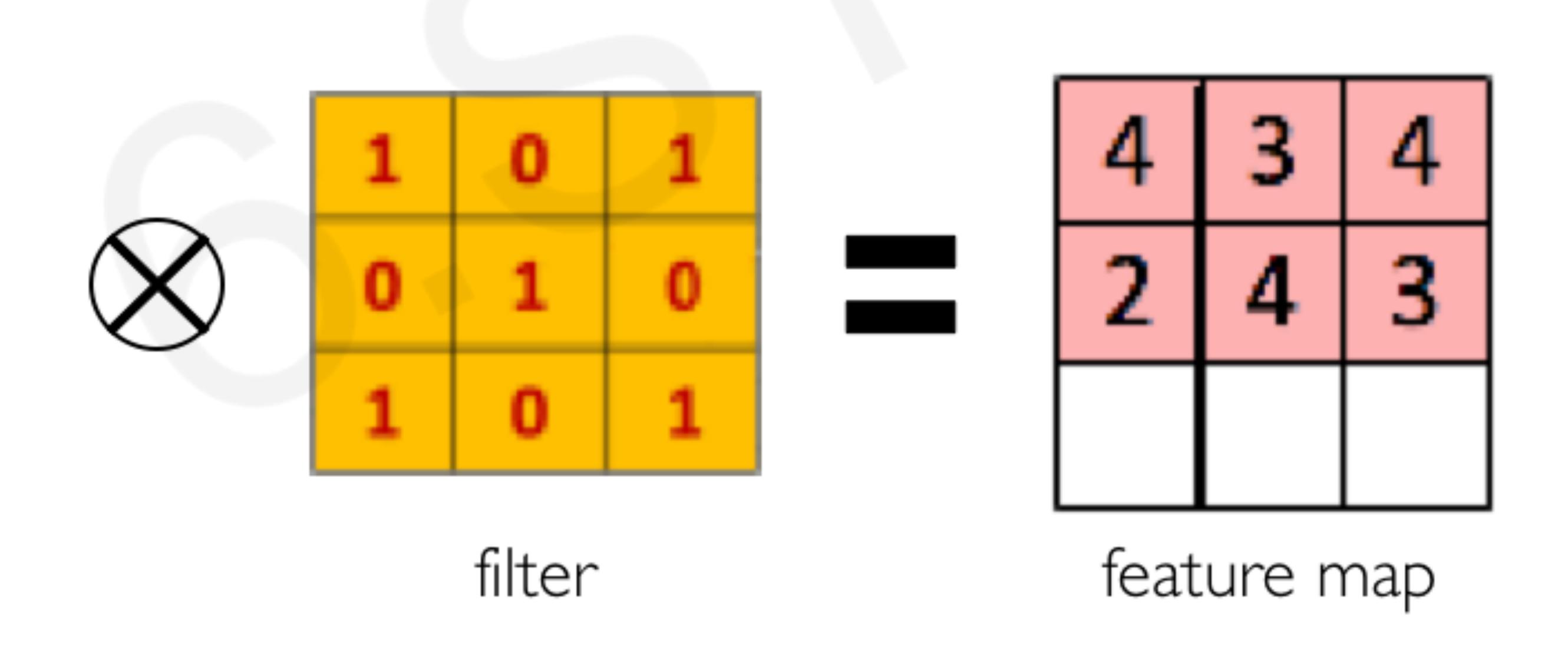
1	1	1	0	0
0	1,80	1,1	1	0
0	Q	1	1	
0	Q	1	1	0
0	1	1	0	0



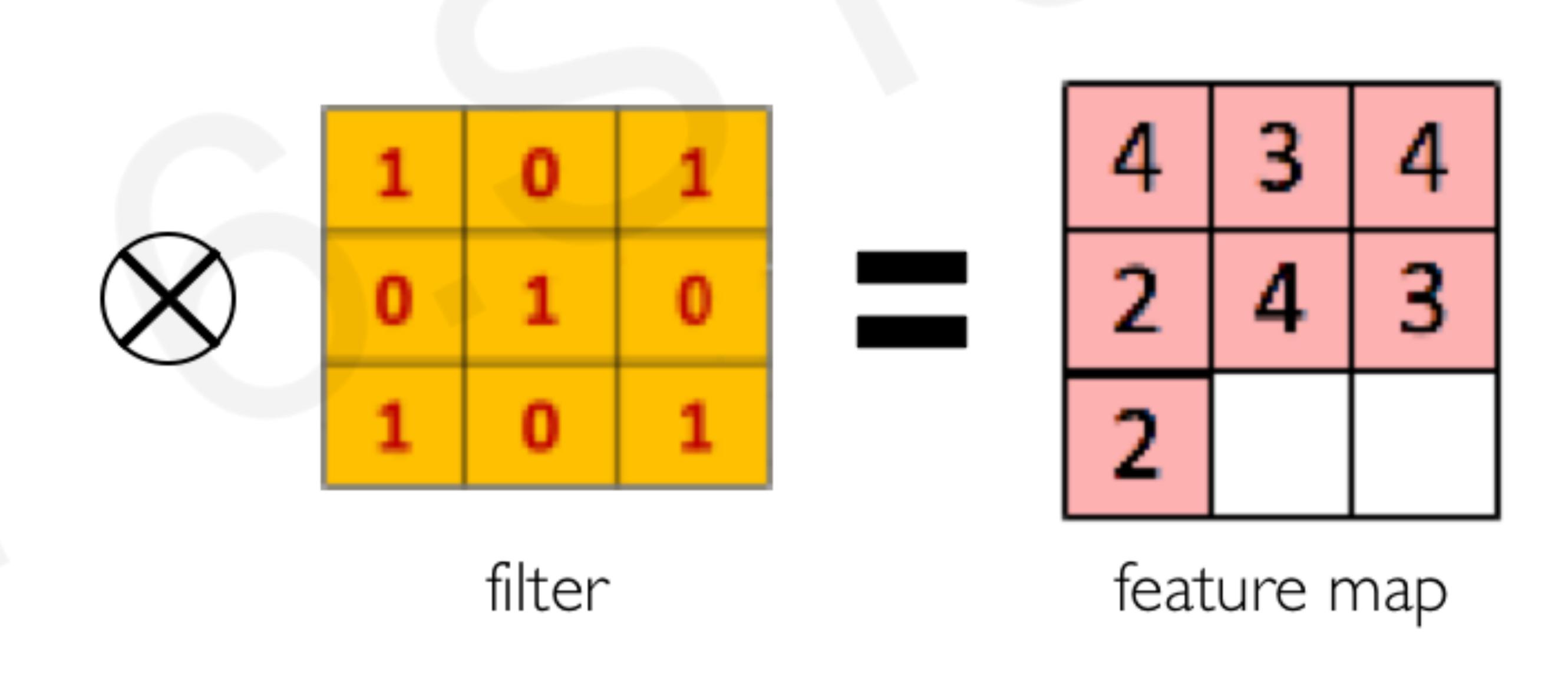
1	1	1	0	0
0	1	1,0	1	0
0	Q	1,2	1	1
0	Q	1.0	1	0
0	1	1	0	0



1	1	1	0	0
0	1	1	1	Q
0	0	1	1	1
0	0	1	1,0	Q
0	1	1	0	0

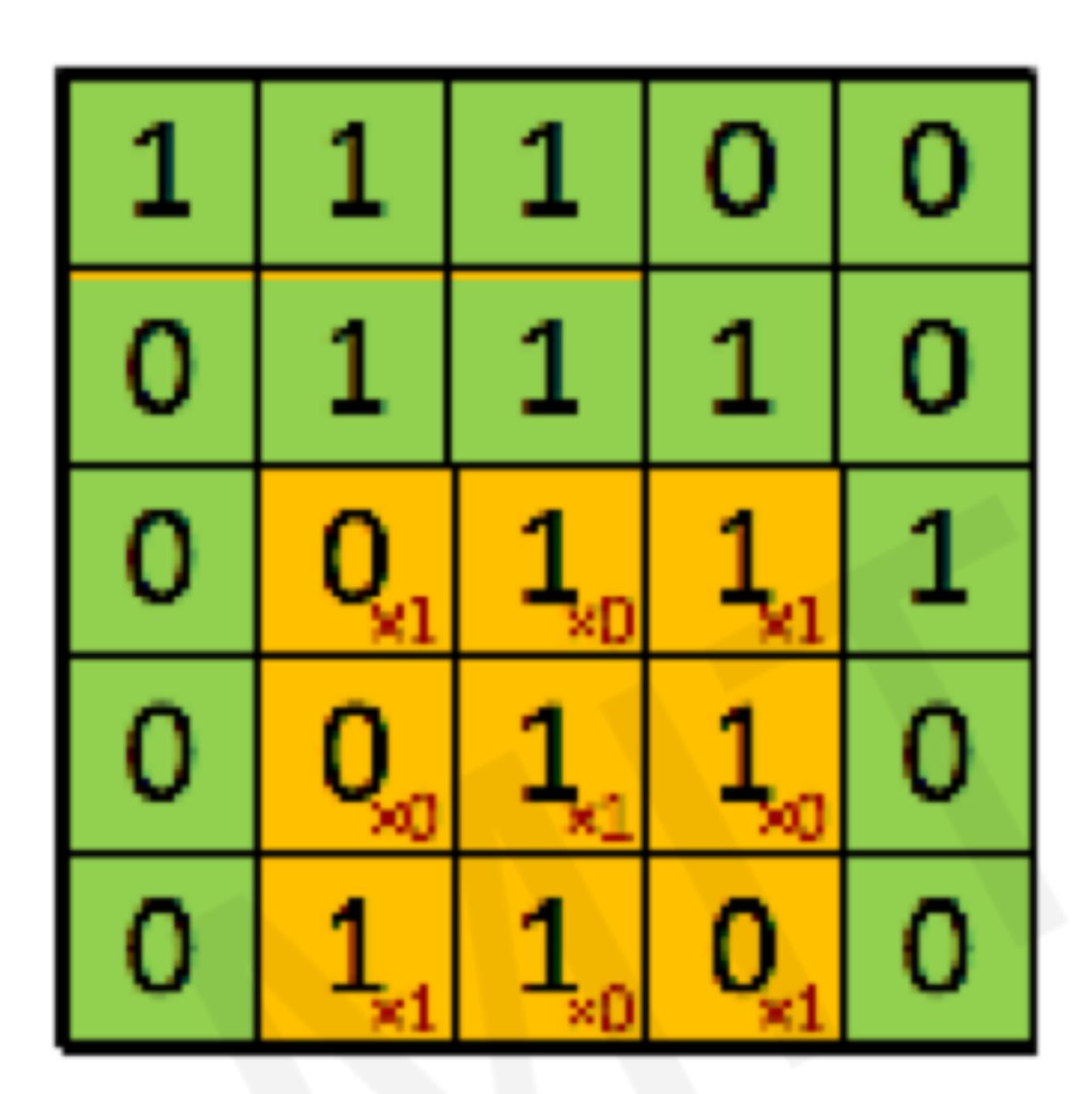


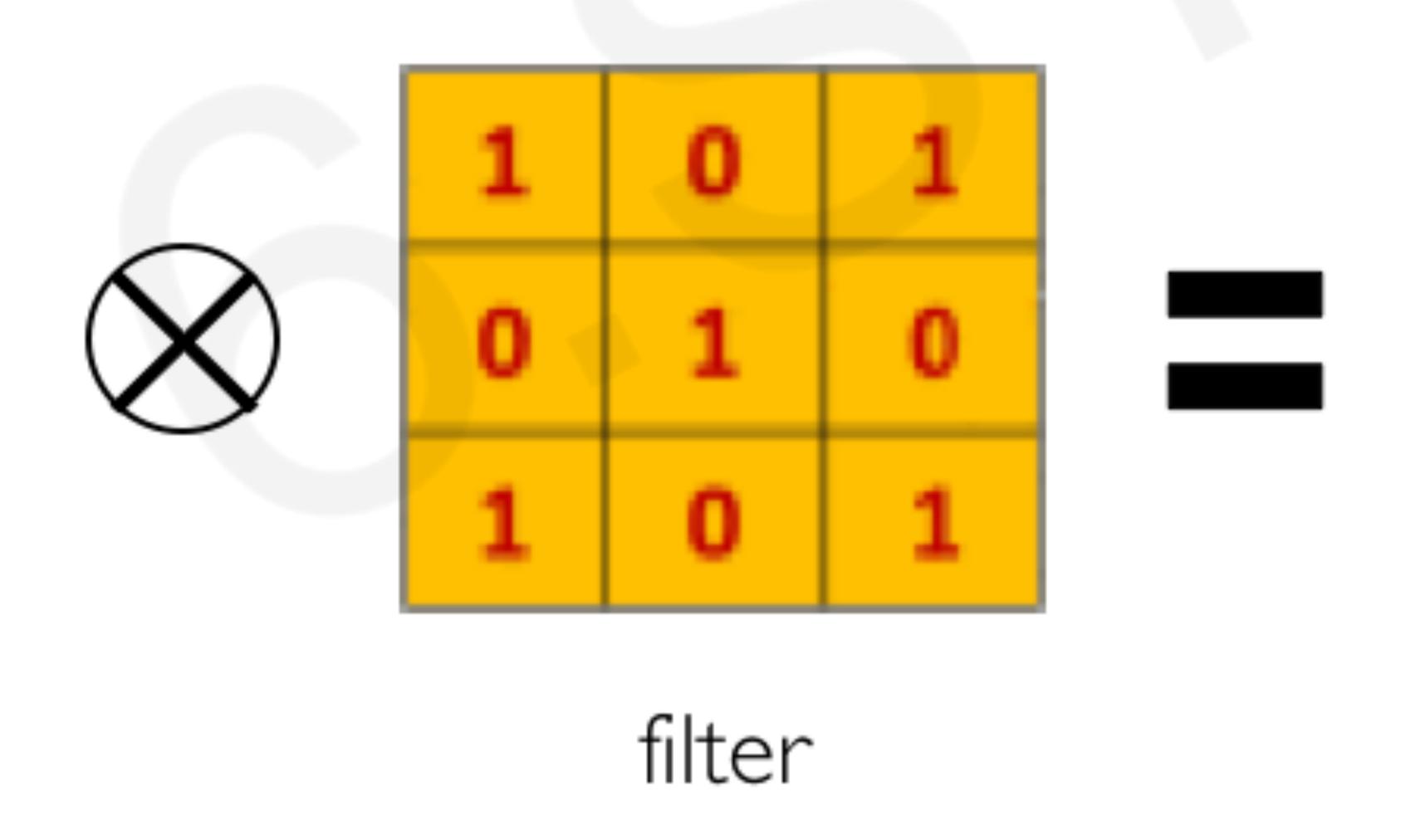
1	1	1	0	0
0	1	1	1	0
0	Q	1	1	1
Qxo	Q	1	1	0
0	1	1	0	0

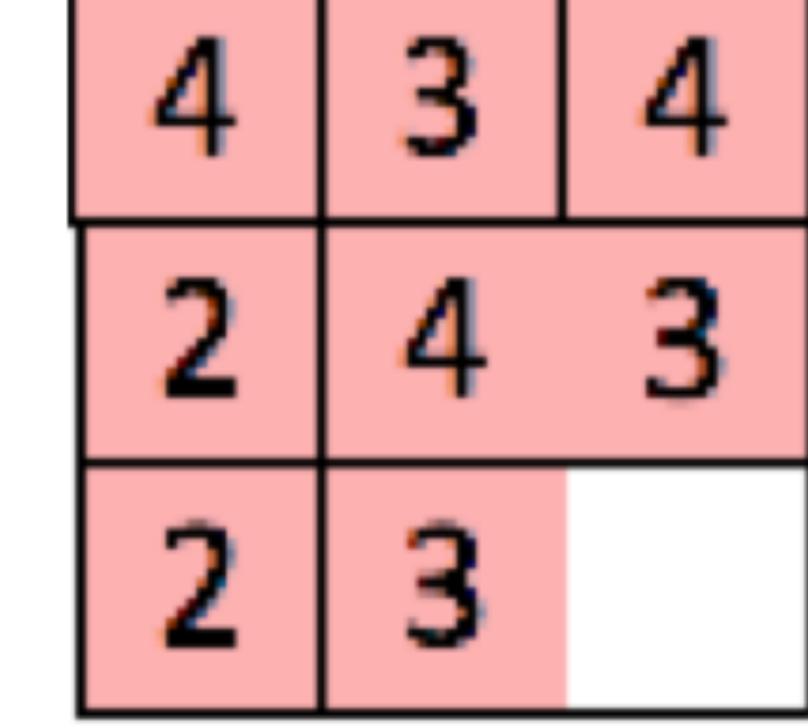


The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

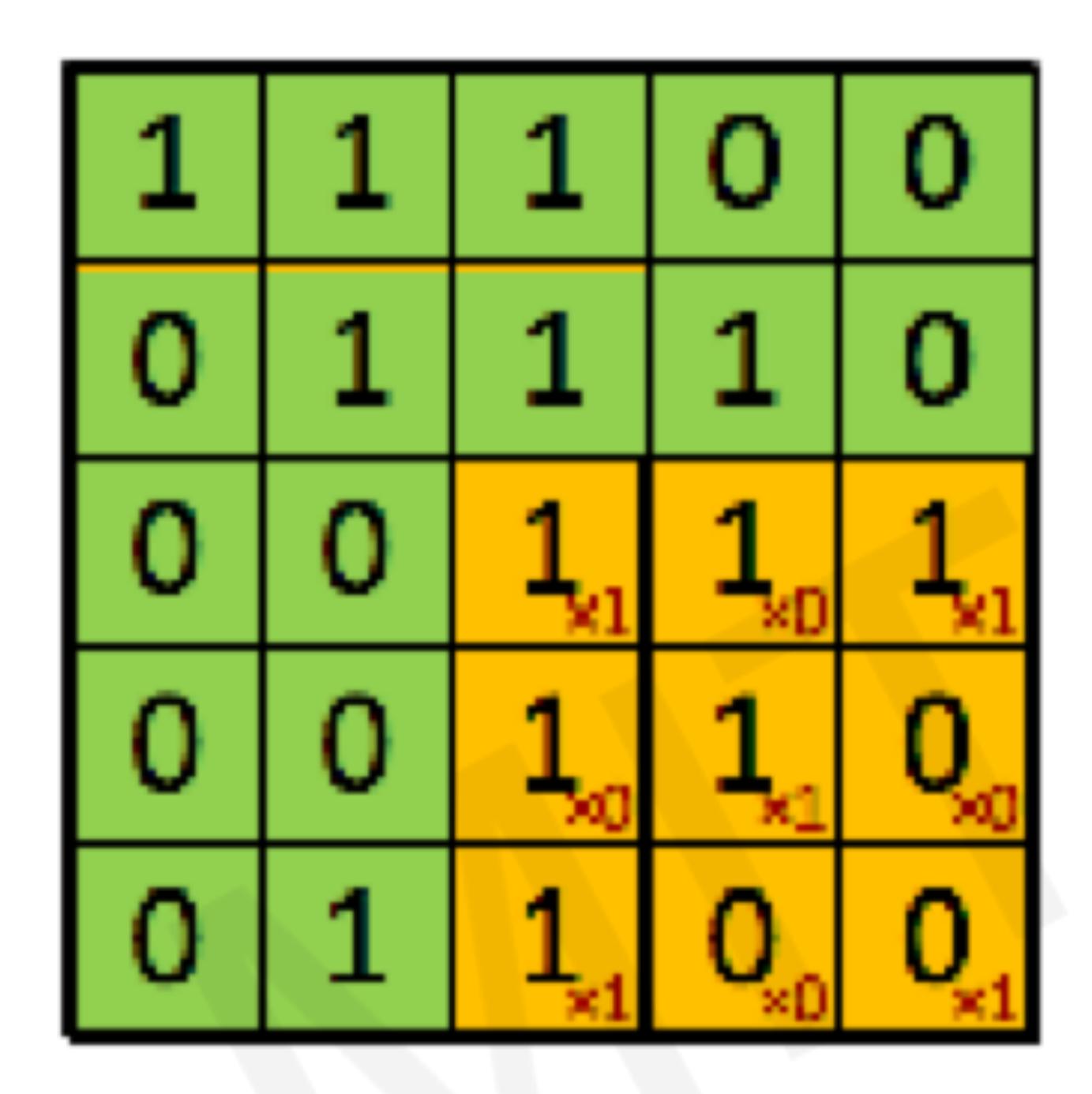


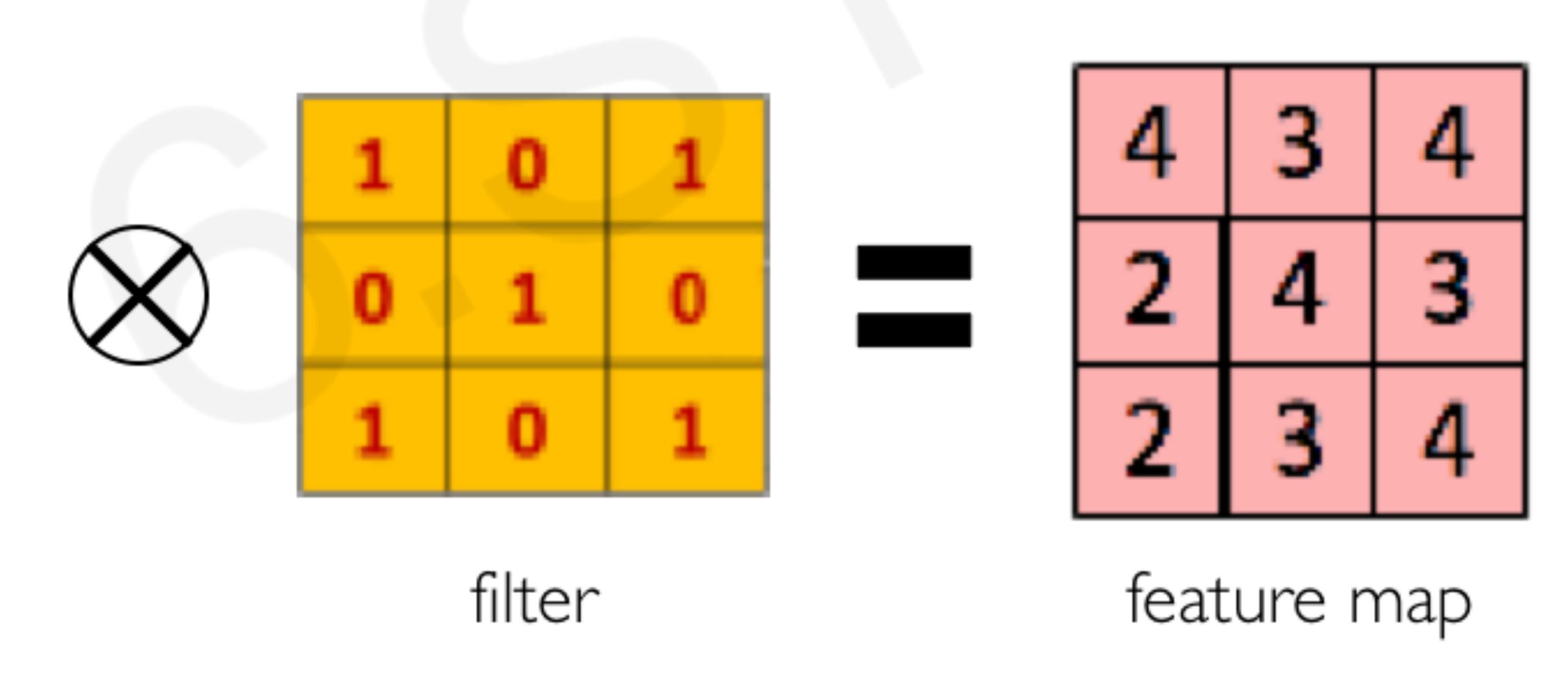




The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:





Producing Feature Maps

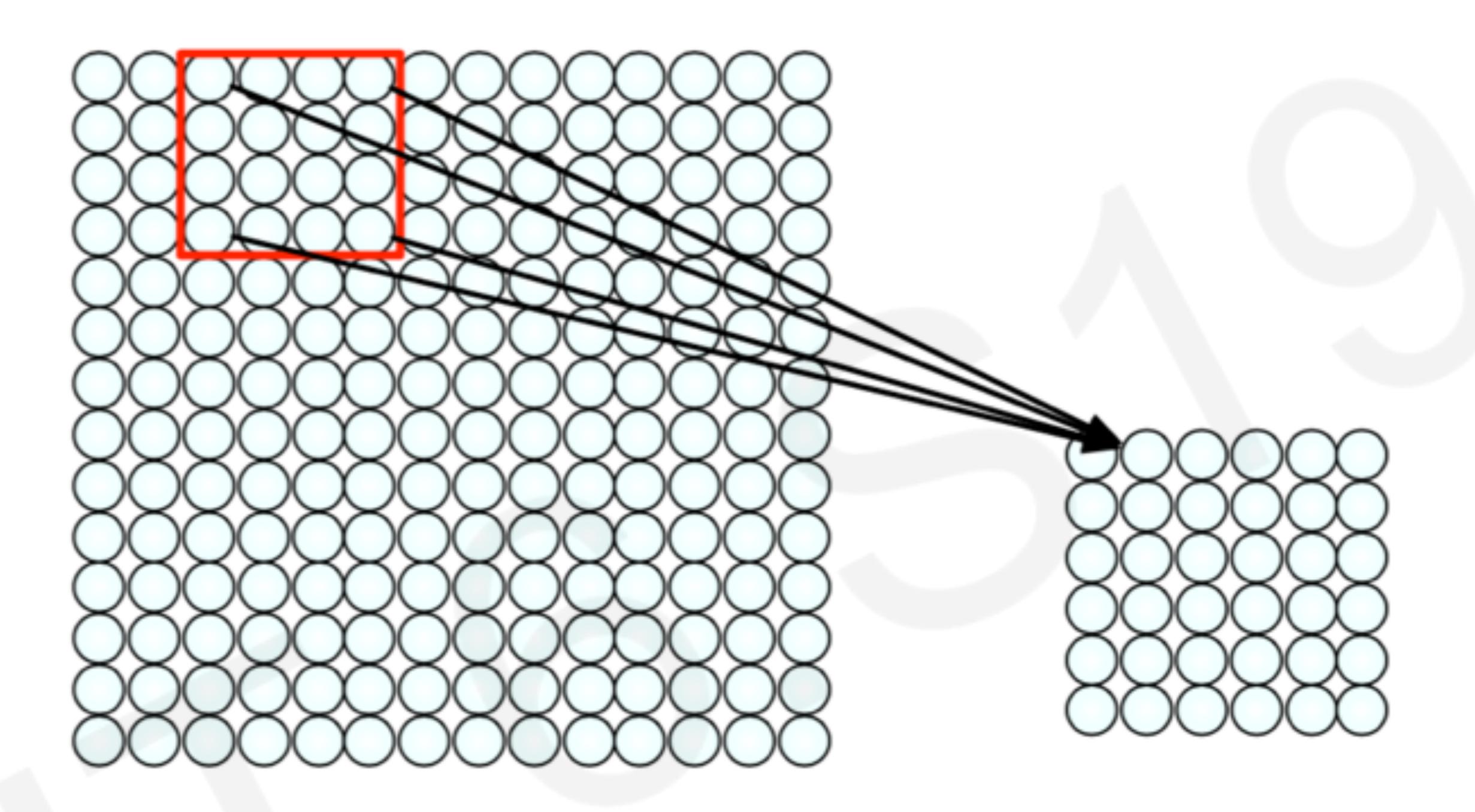
Original

Sharpen

Edge Detect

"Strong" Edge Detect

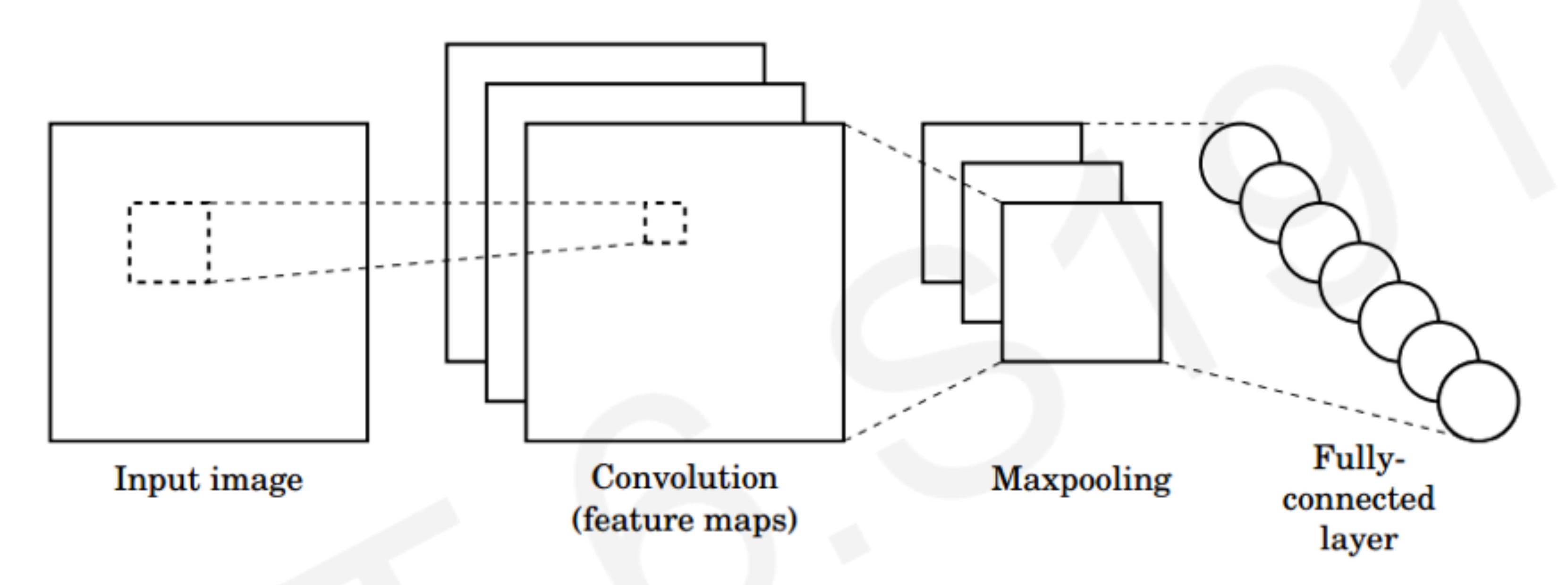
Feature Extraction with Convolution



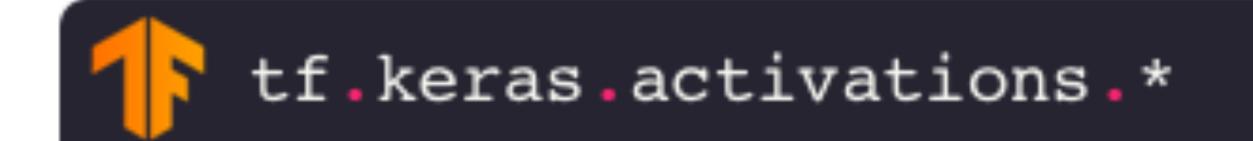
- 1) Apply a set of weights a filter to extract **local features**
 - 2) Use multiple filters to extract different features
 - 3) Spatially share parameters of each filter

Convolutional Neural Networks (CNNs)

CNNs for Classification

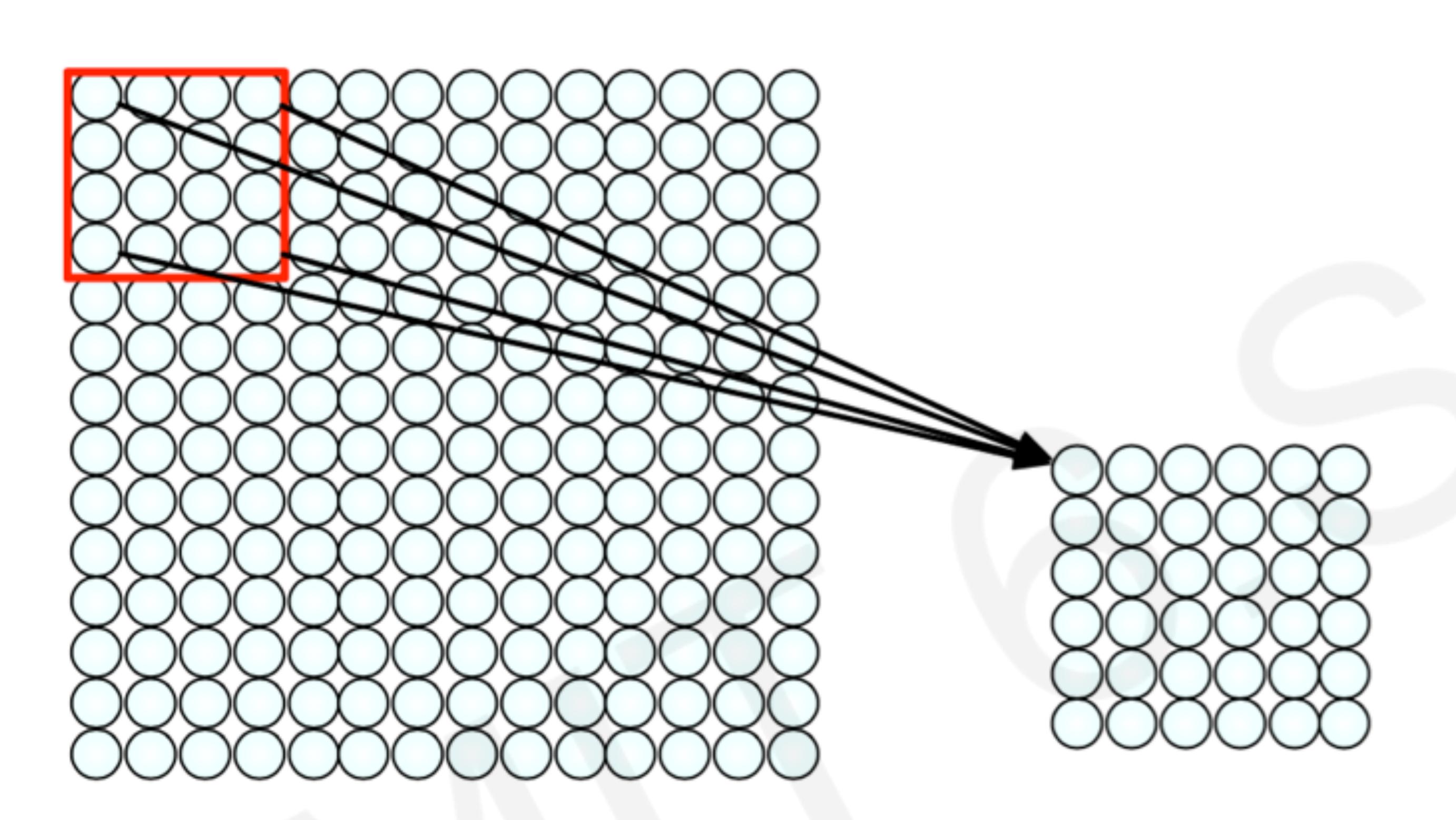


- 1. Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.



Train model with image data. Learn weights of filters in convolutional layers.

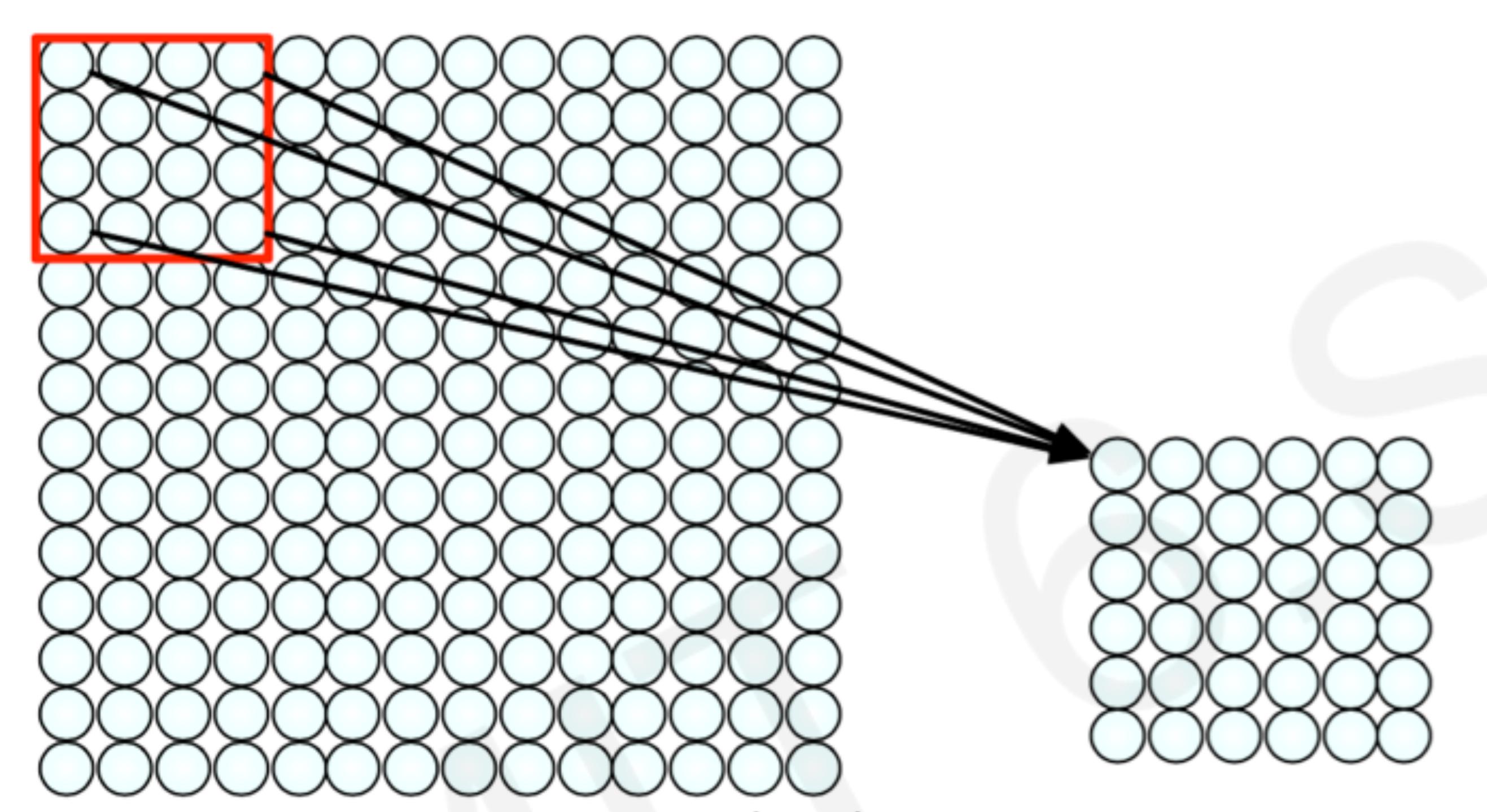
Convolutional Layers: Local Connectivity

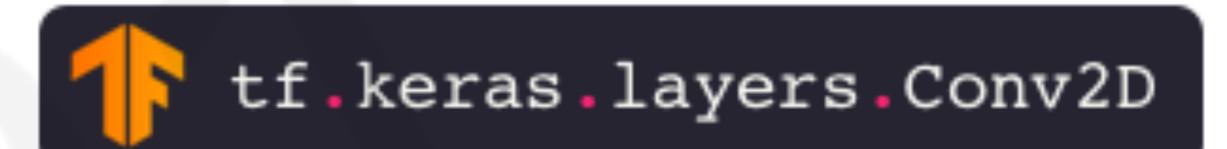


For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

Convolutional Layers: Local Connectivity





For a neuron in hidden layer:

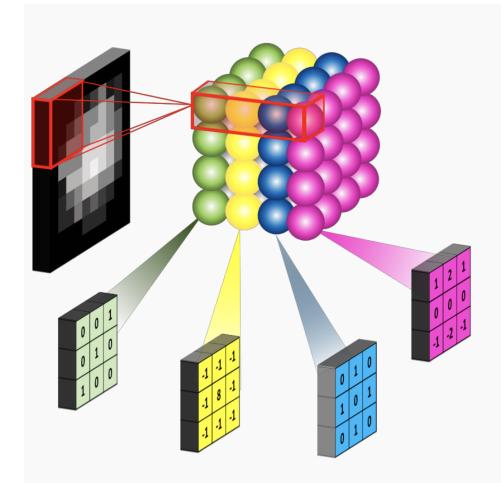
- Take inputs from patch
- Compute weighted sum
- Apply bias

4x4 filter: matrix of weights w_{ij}

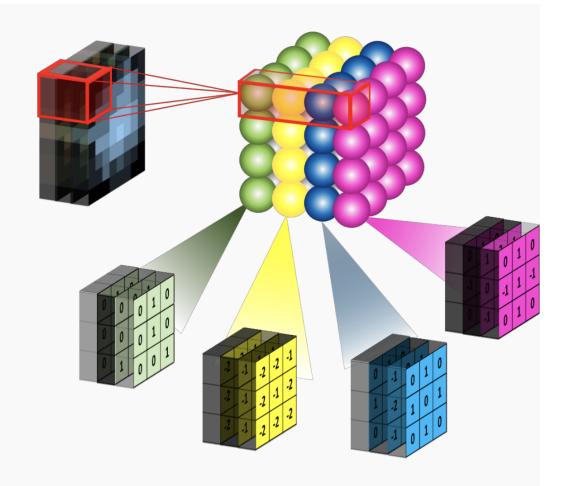
$$\sum_{i=1}^{4} \sum_{j=1}^{4} w_{ij} x_{i+p,j+q} + b$$

for neuron (p,q) in hidden layer

- 1) applying a window of weights
- 2) computing linear combinations
- 3) activating with non-linear function

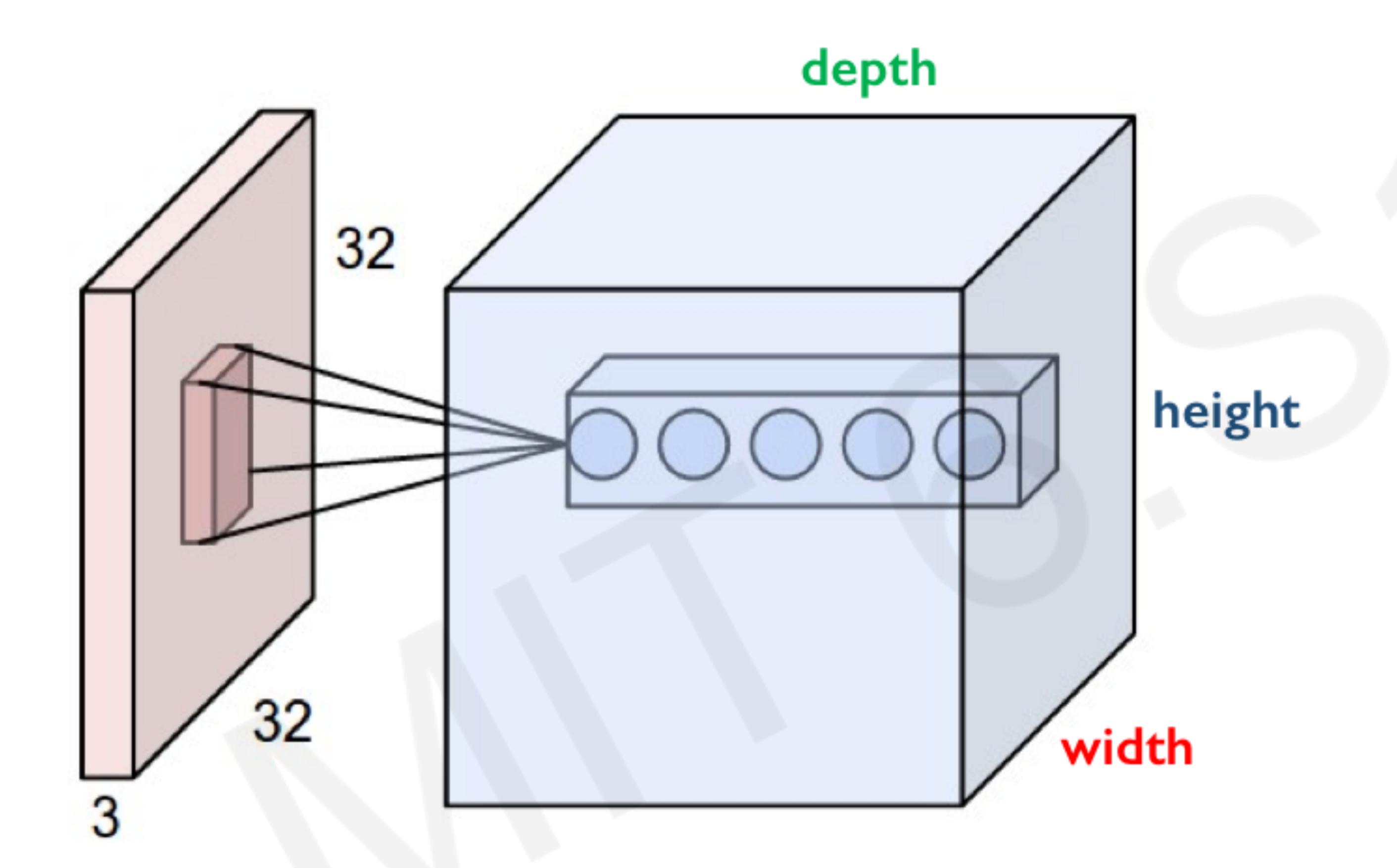


Convolutional layer with four 3x3 filters on a black and white image (just one channel)



Convolutional layer with four 3x3 filters on an RGB image. As you can see, the filters are now cubes, and they are applied on the full depth of the image..

CNNs: Spatial Arrangement of Output Volume



Layer Dimensions:

h x w x d

where h and w are spatial dimensions d (depth) = number of filters

Stride:

Filter step size

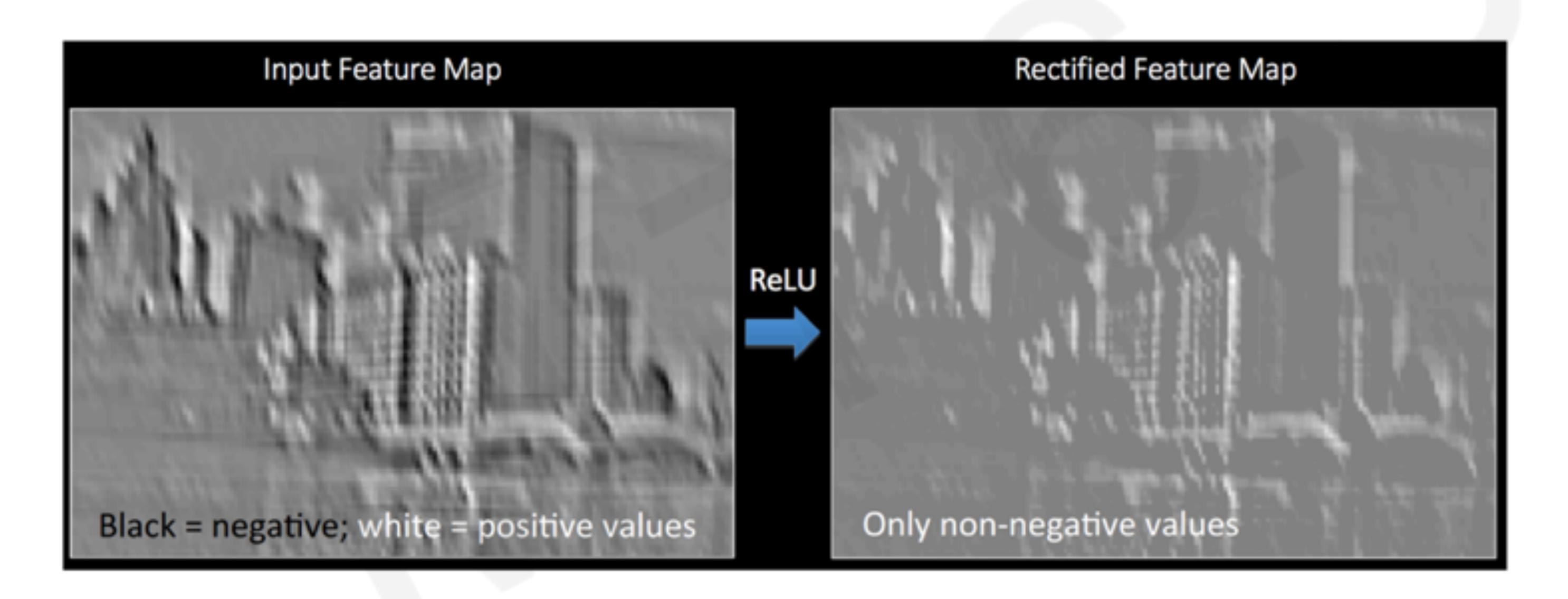
Receptive Field:

Locations in input image that a node is path connected to

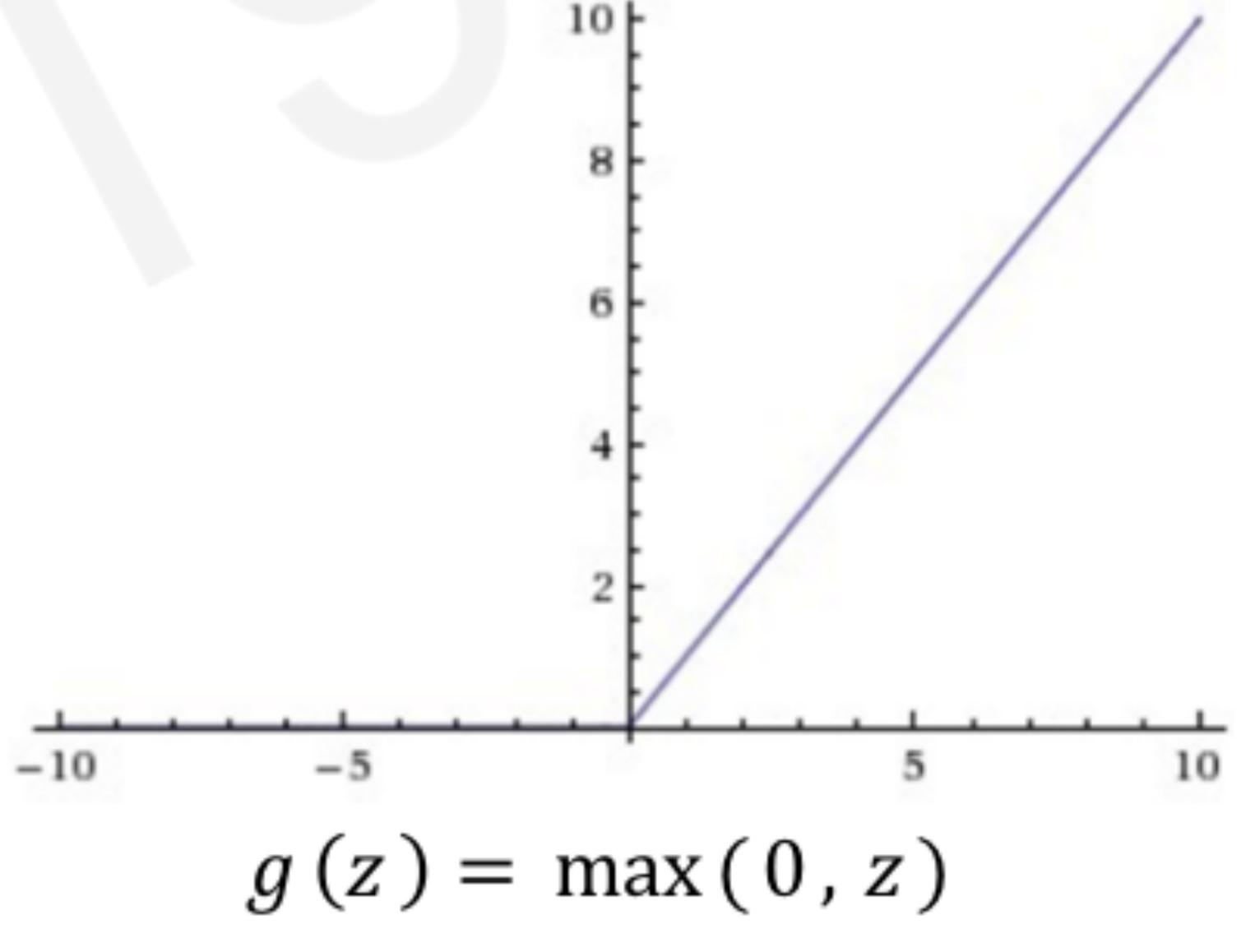
tf.keras.layers.Conv2D(filters=d, kernel_size=(h,w), strides=s)

Introducing Non-Linearity

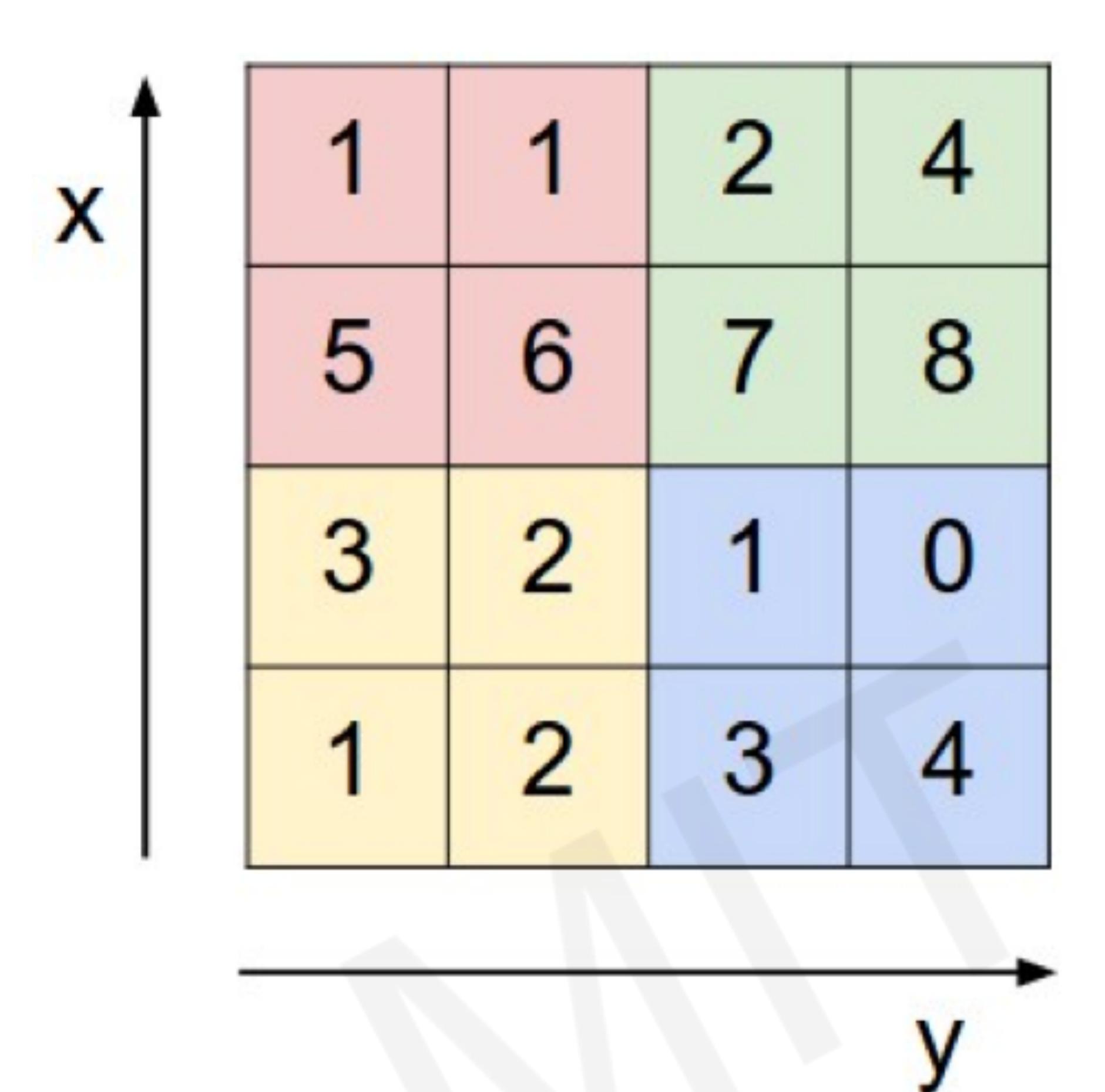
- Apply after every convolution operation (i.e., after convolutional layers)
- ReLU: pixel-by-pixel operation that replaces all negative values by zero. **Non-linear operation!**



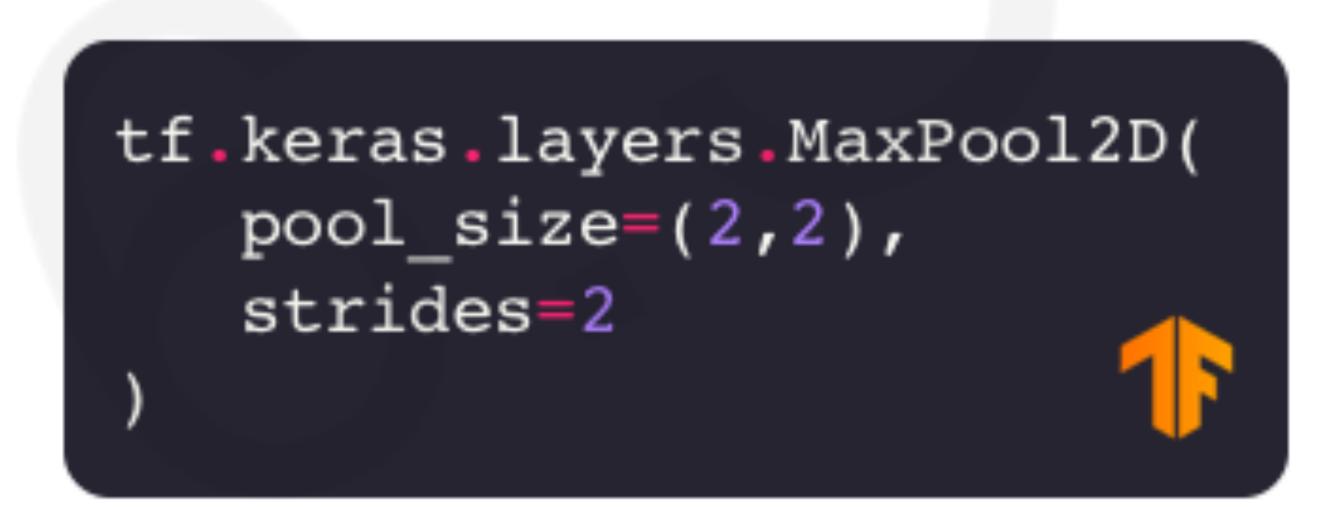
Rectified Linear Unit (ReLU)

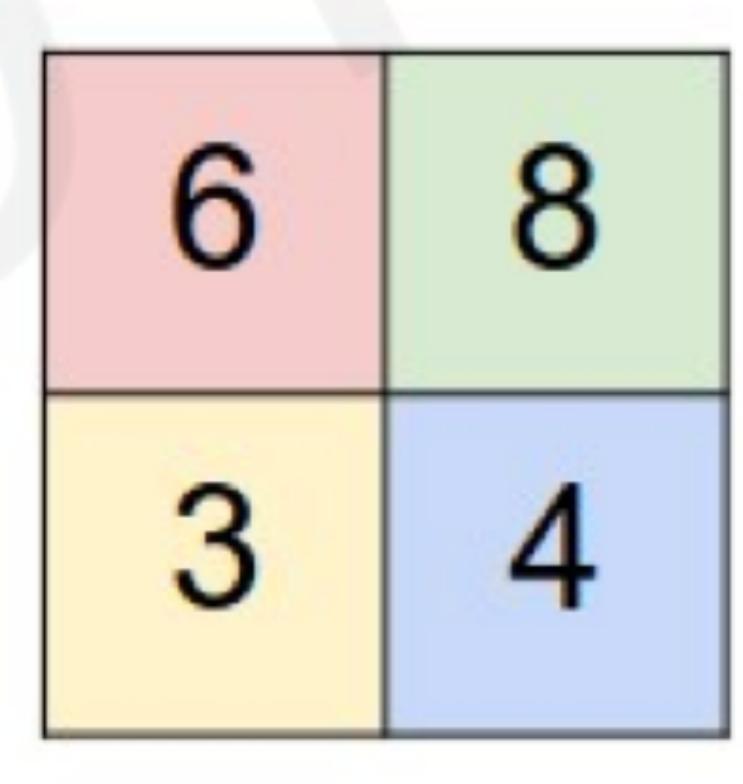


Poling



max pool with 2x2 filters and stride 2



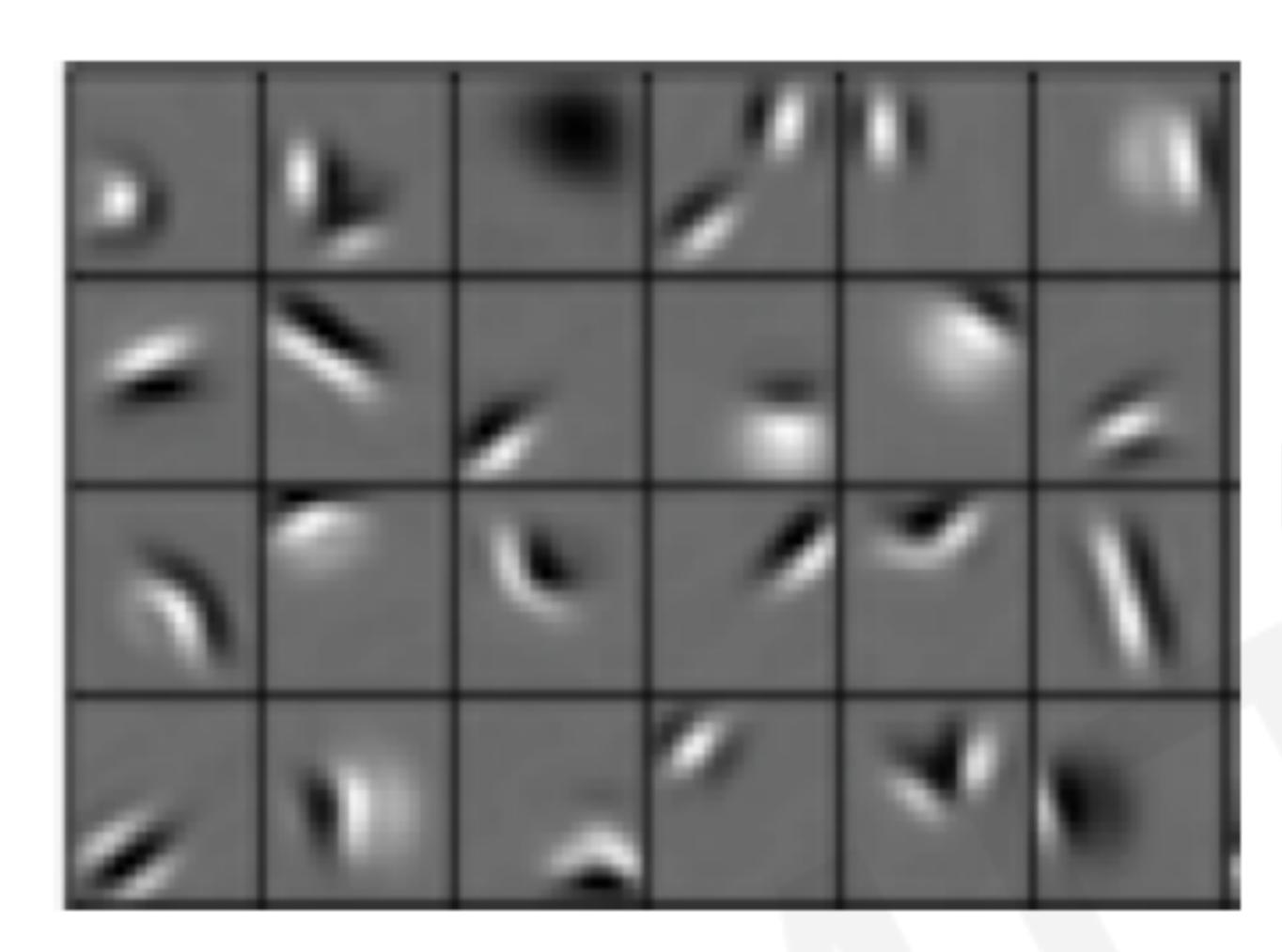


- 1) Reduced dimensionality
- 2) Spatial invariance

How else can we downsample and preserve spatial invariance?

Representation Learning in Deep CNNs

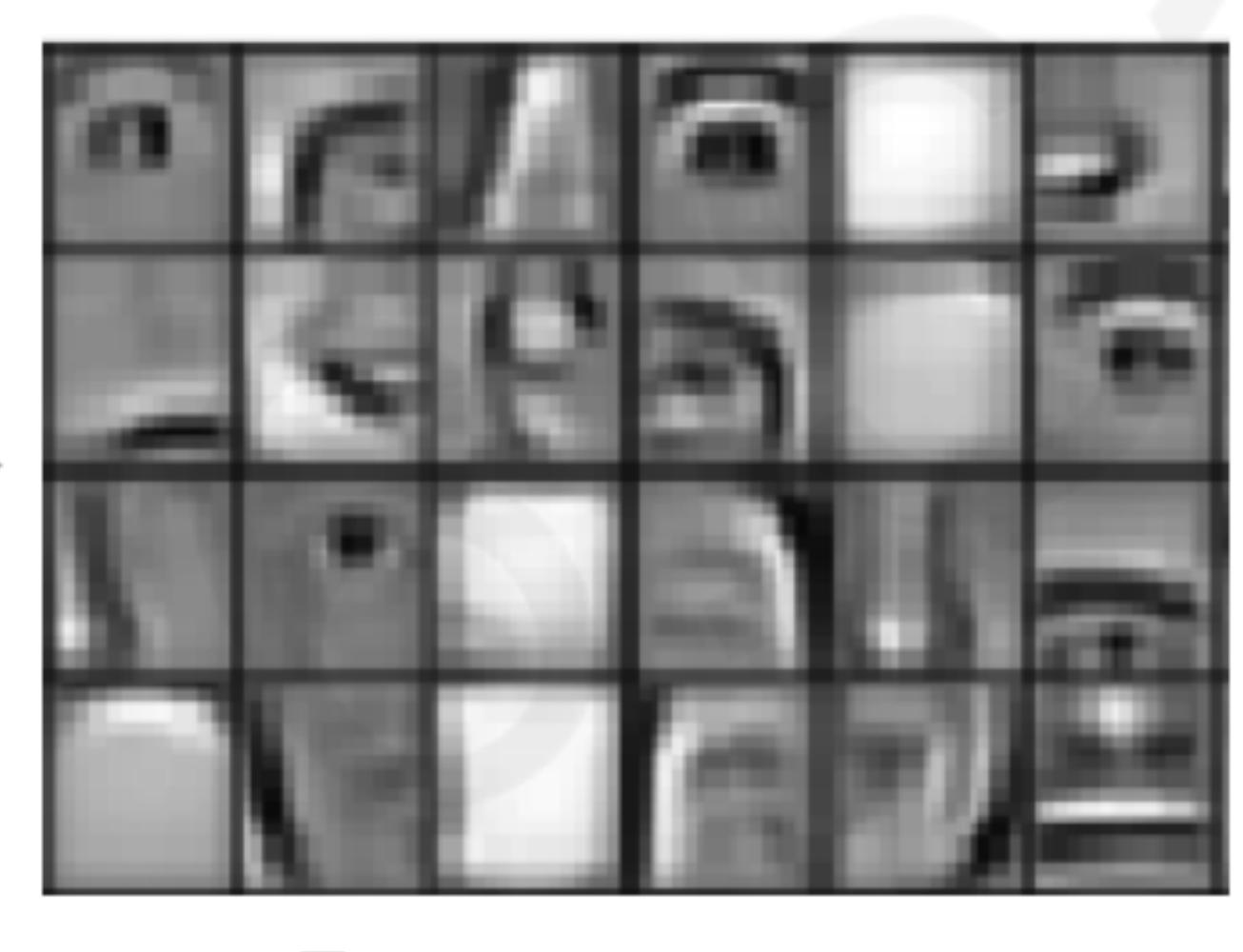
Low level features



Edges, dark spots

Conv Layer

Mid level features



Eyes, ears, nose

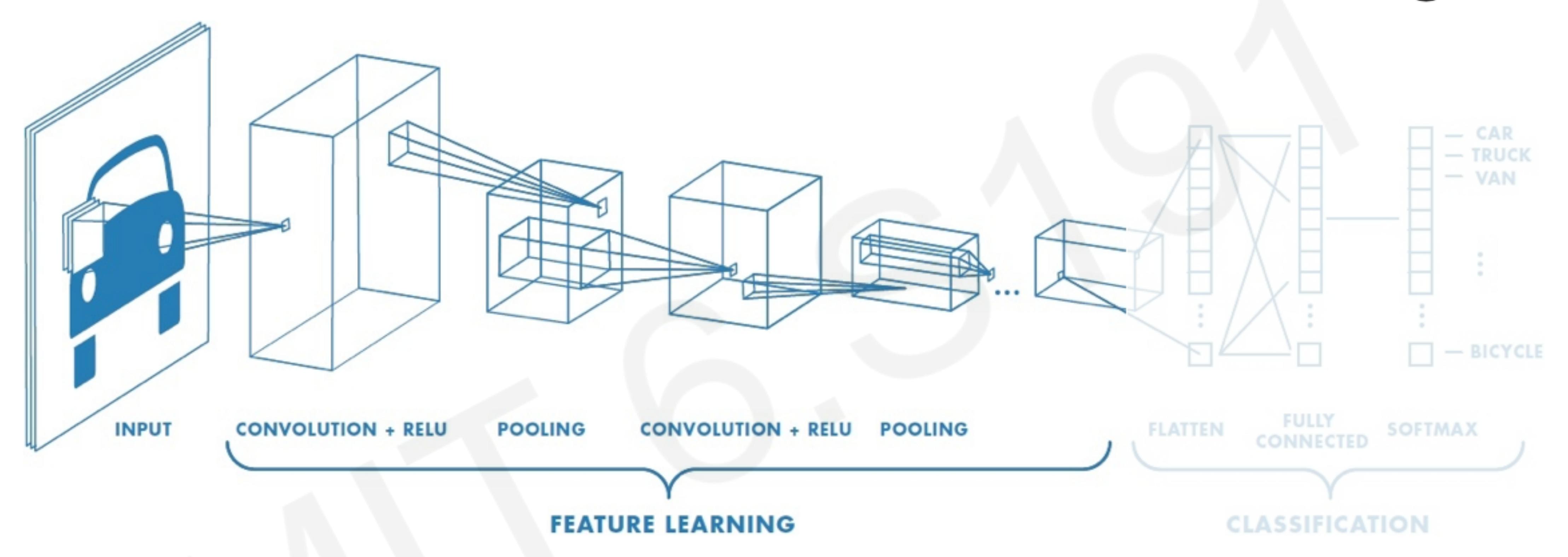
Conv Layer 2

High level features

Facial structure

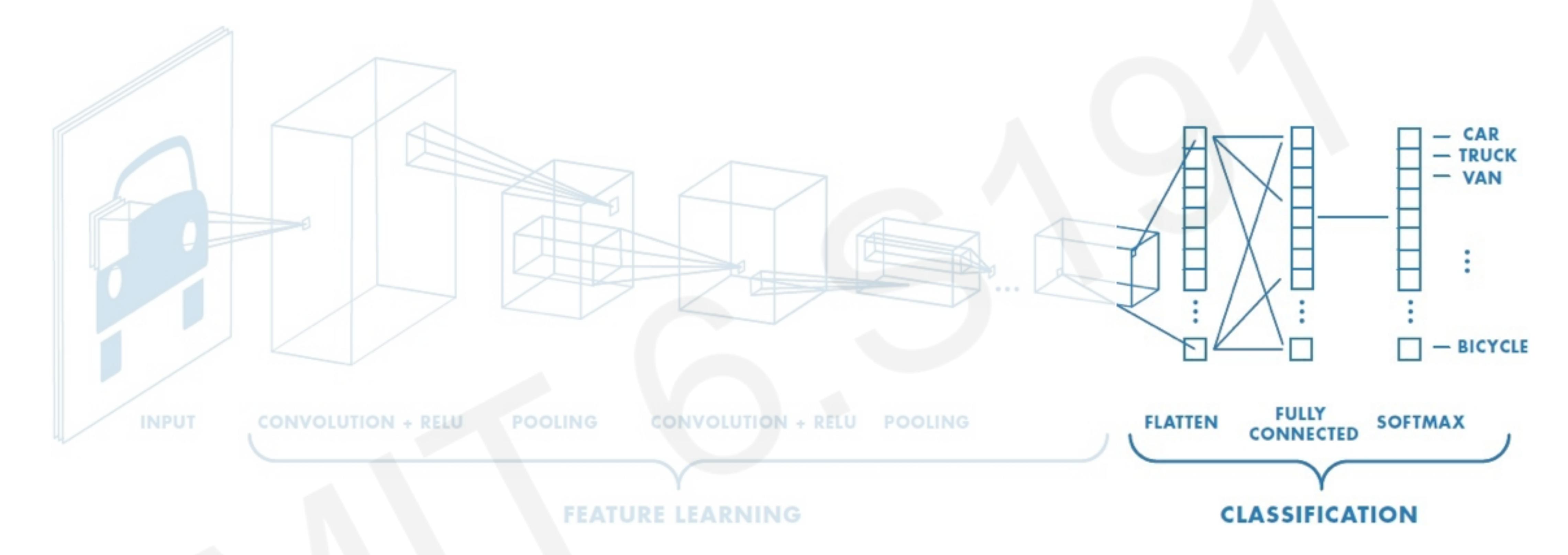
Conv Layer 3

CNNs for Classification: Feature Learning

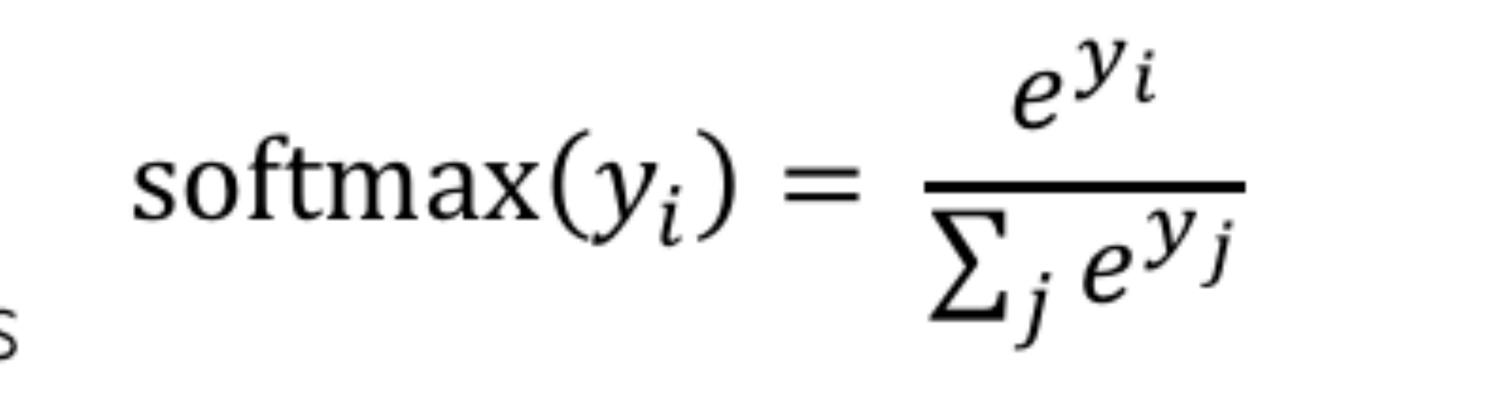


- 1. Learn features in input image through convolution
- 2. Introduce non-linearity through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with pooling

CNNs for Classification: Class Probabilities

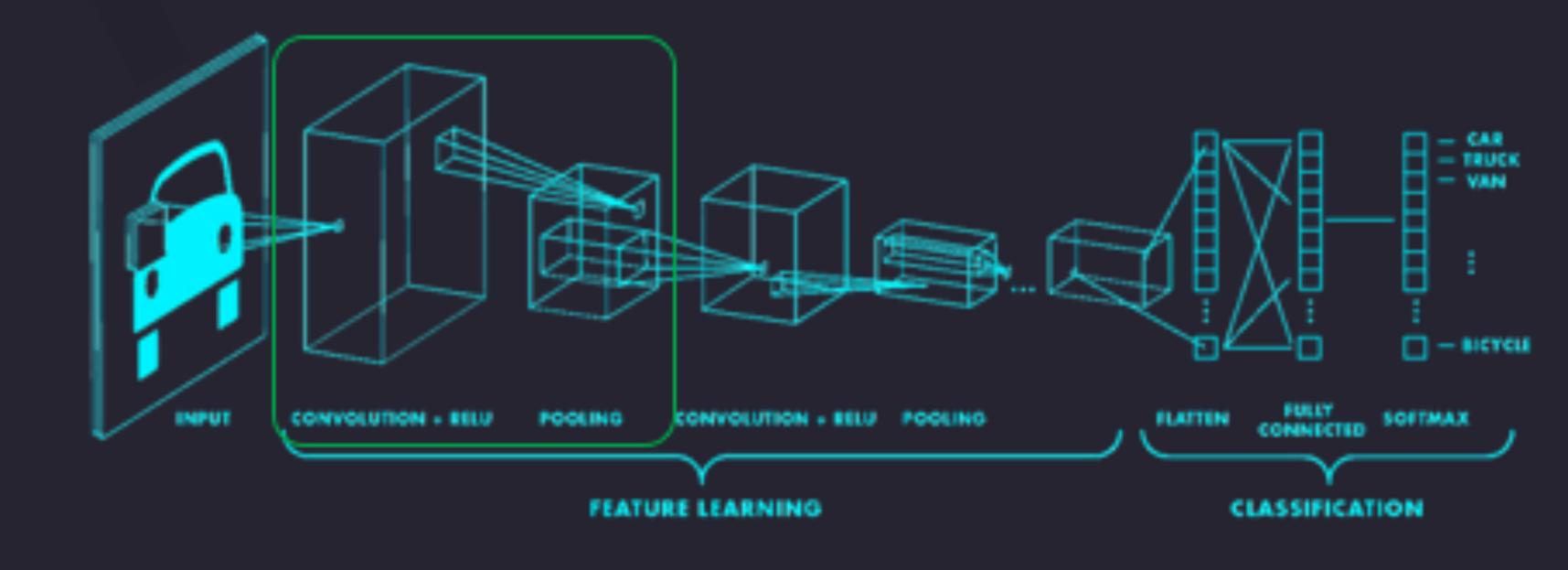


- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as **probability** of image belonging to a particular class



Putting it all together

```
import tensorflow as tf
def generate model():
   model = tf.keras.Sequential([
      # first convolutional layer
      tf.keras.layers.Conv2D(32, filter_size=3, activation='relu'),
      tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
      # second convolutional layer
      tf.keras.layers.Conv2D(64, filter_size=3, activation='relu'),
      tf.keras.layers.MaxPool2D(pool size=2, strides=2),
      # fully connected classifier
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dense(1024, activation='relu'),
      tf.keras.layers.Dense(10, activation='softmax') # 10 outputs
   return model
```



CNNs for Classification: ImageNet

ImageNet Dataset

Dataset of over 14 million images across 21,841 categories

"Elongated crescent-shaped yellow fruit with soft sweet flesh"

1409 pictures of bananas.

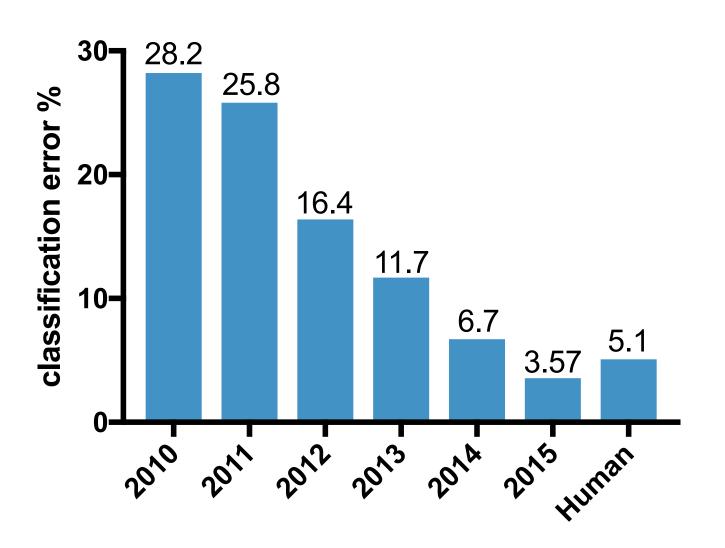
ImageNet Challenge

Classification task: produce a list of object categories present in image. 1000 categories. "Top 5 error": rate at which the model does not output correct label in top 5 predictions

Other tasks include:

single-object localization, object detection from video/image, scene classification, scene parsing

ImageNet Challenge: Classification Task



2012: AlexNet. First CNN to win.

- 8 layers, 61 million parameters

2013: ZFNet

- 8 layers, more filters

2014:VGG

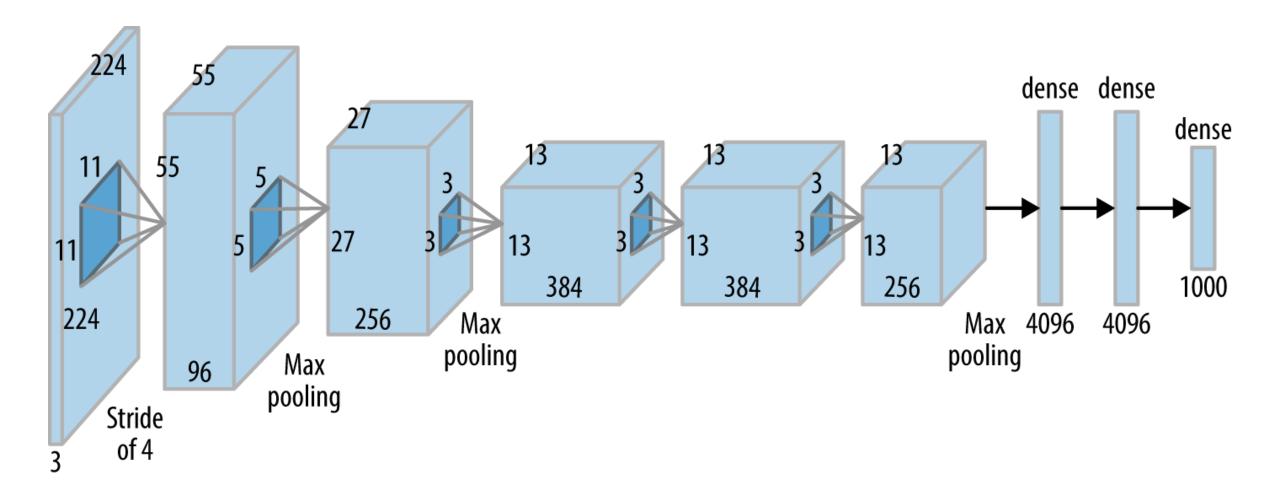
- 19 layers

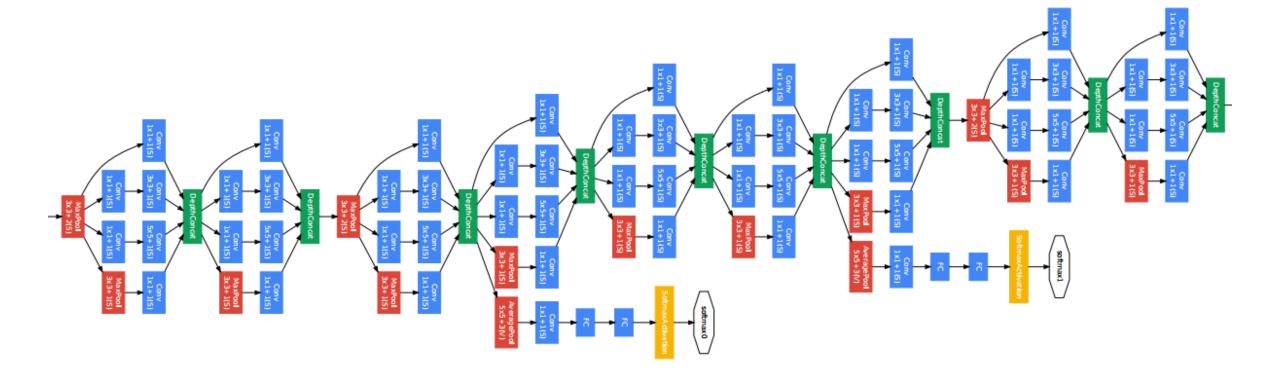
2014: GoogLeNet

- "Inception" modules
- 22 layers, 5million parameters

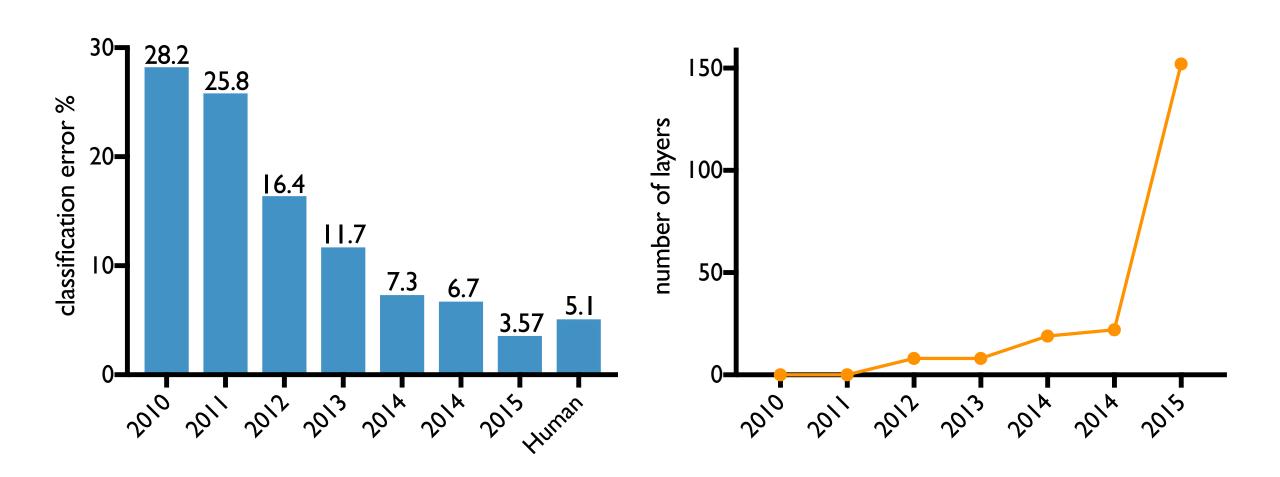
2015: ResNet

- 152 layers



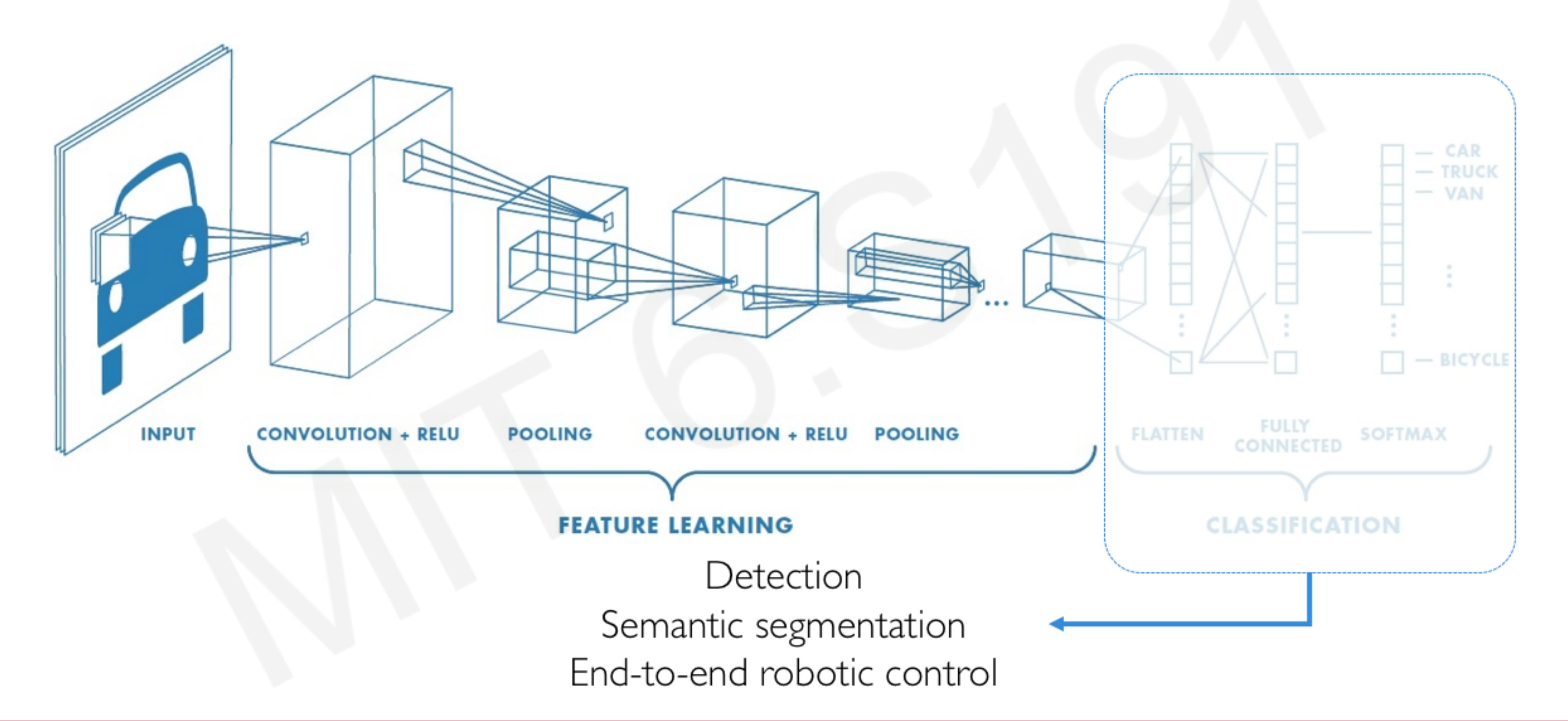


ImageNet Challenge: Classification Task



An Architecture for Many Applications

An Architecture for Many Applications



Deep Learning for Computer Vision: Impact

Semantic Segmentation: Fully Convolutional Networks

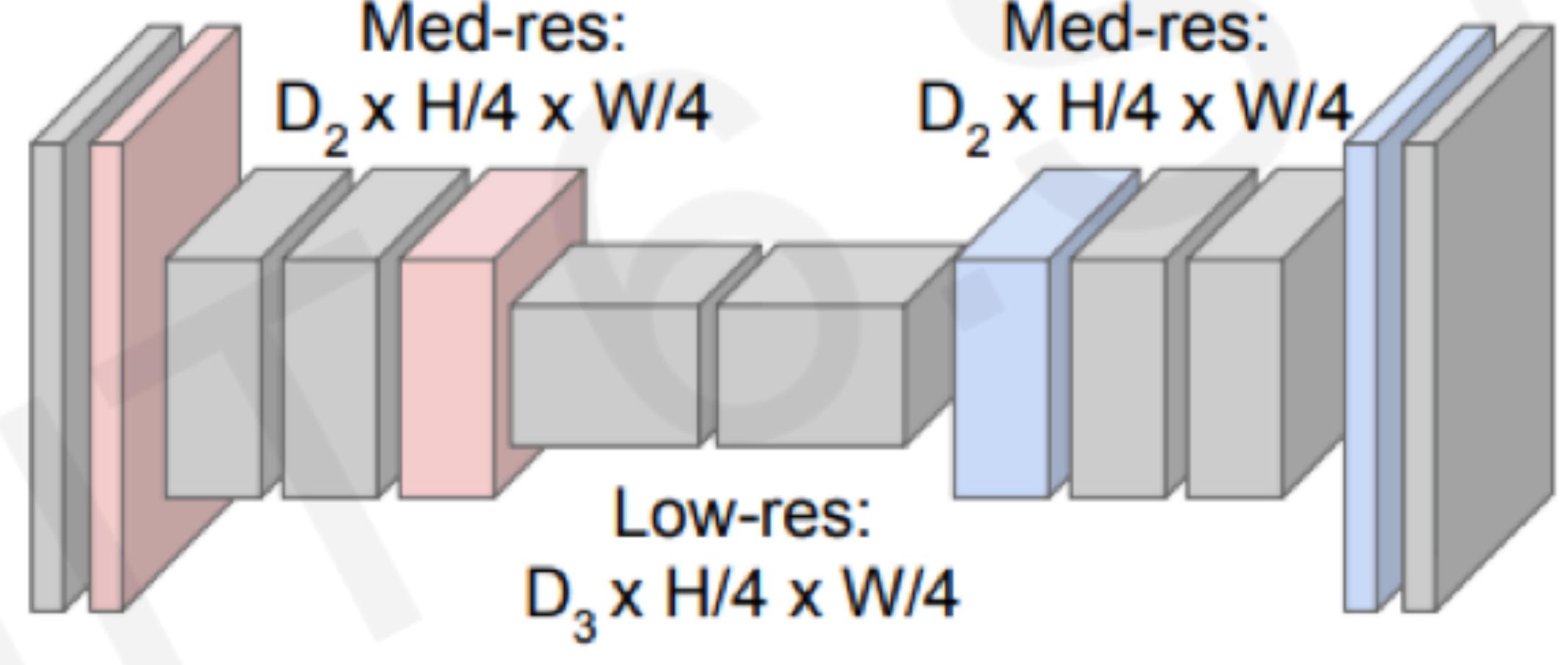
FCN: Fully Convolutional Network. Network designed with all convolutional layers, with downsampling and upsampling operations



Input: $3 \times H \times W$

High-res:

D₄ x H/2 x W/2



High-res: D₄ x H/2 x W/2

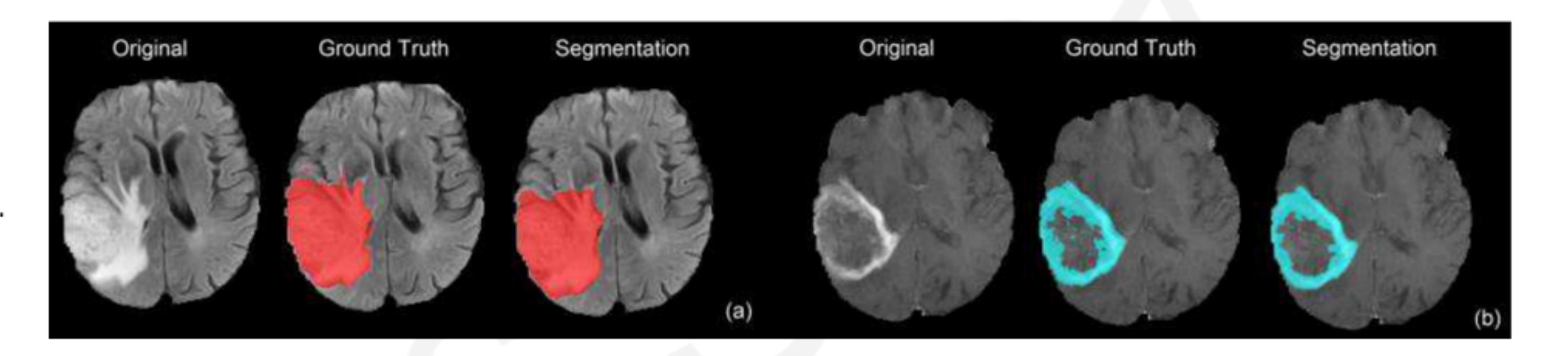
Predictions: $H \times W$



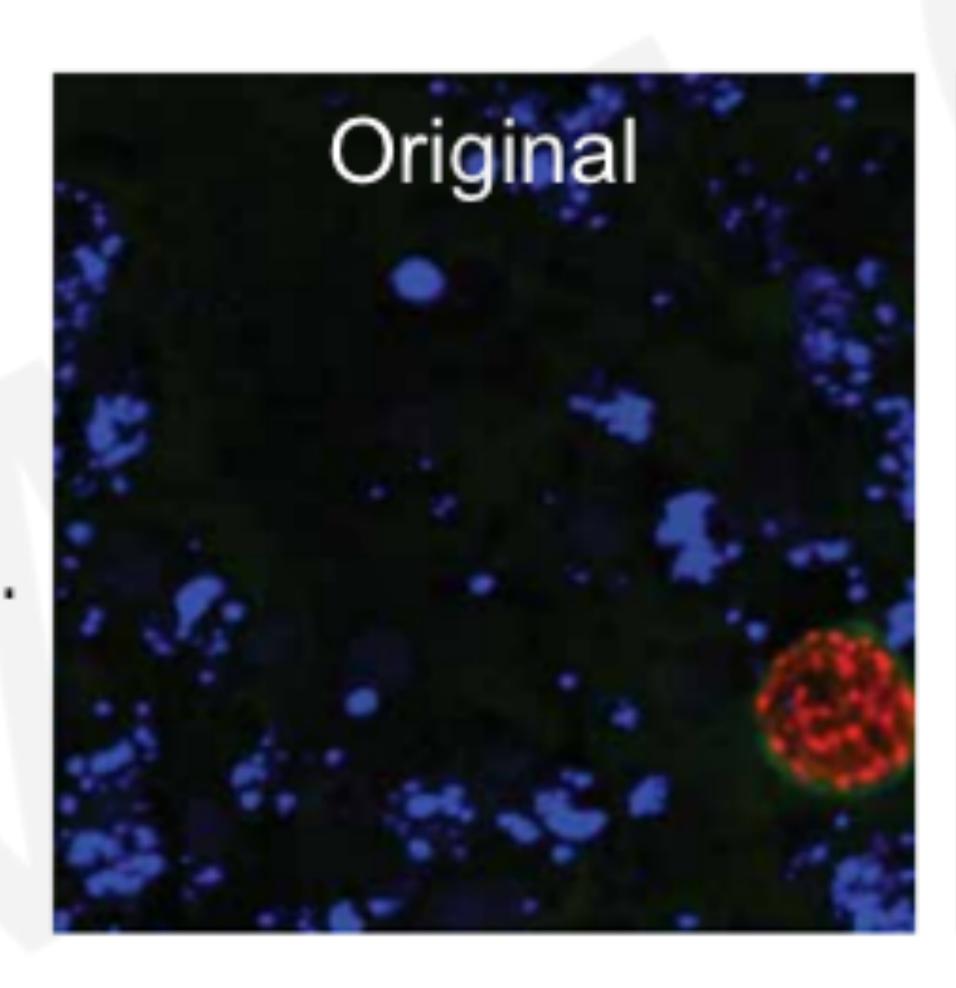
Semantic Segmentation: Biomedical Image Analysis

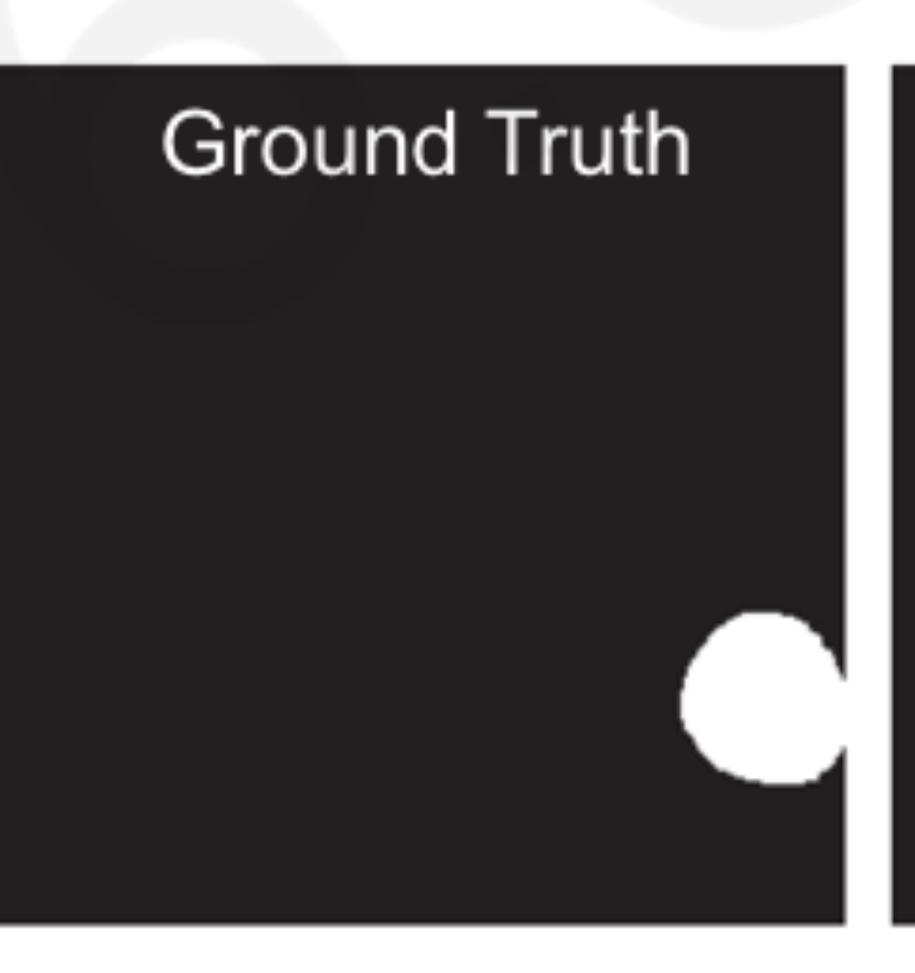
Brain Tumors

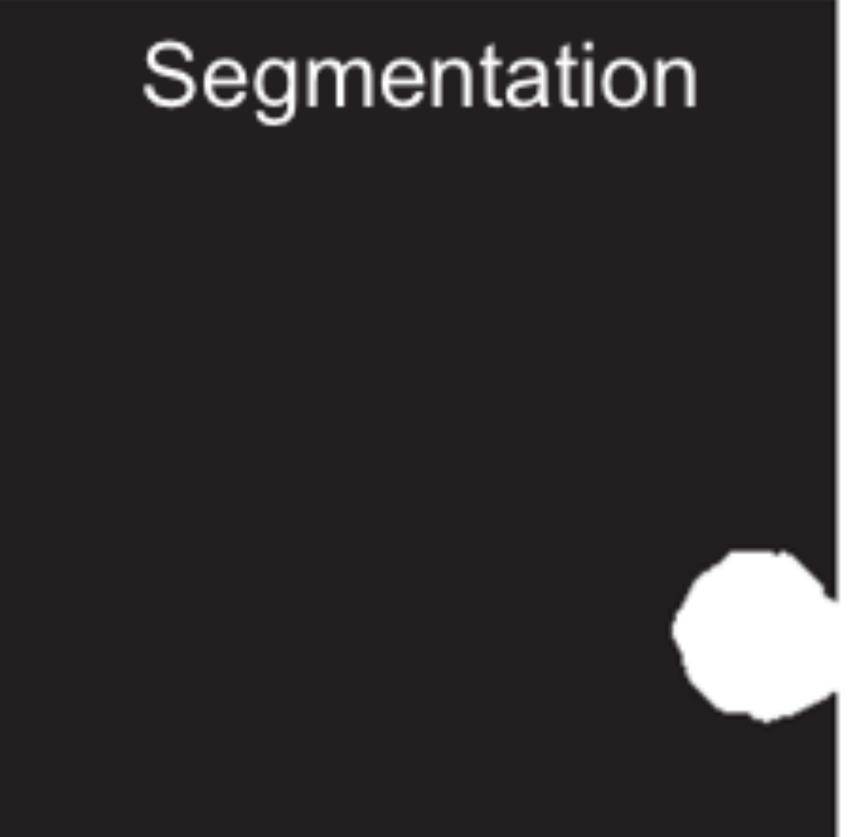
Dong+ MIUA 2017.



Malaria Infection
Soleimany+ arXiv 2019.









Self-Driving Cars: Navigation from Visual Perception

Raw Perception

I

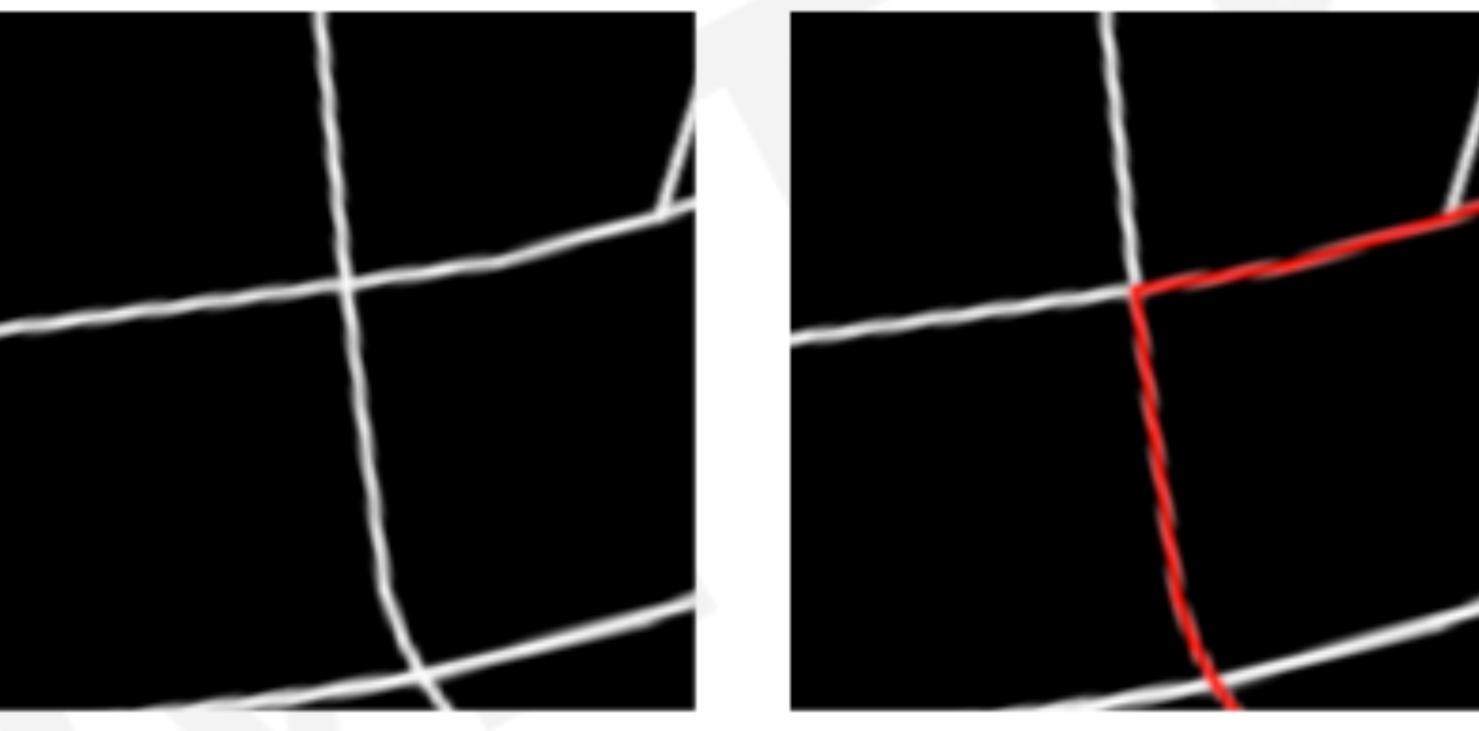
(ex. camera)



Coarse Maps

M

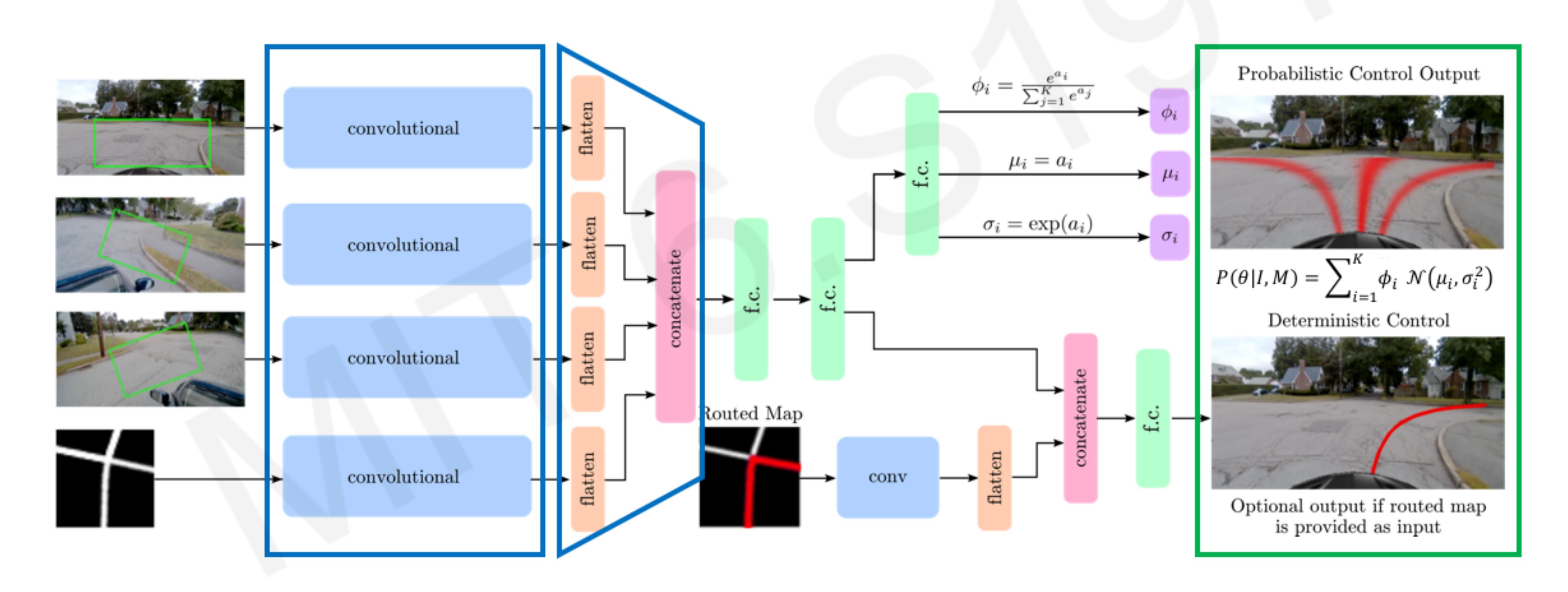
(ex. GPS)



Possible Control Commands

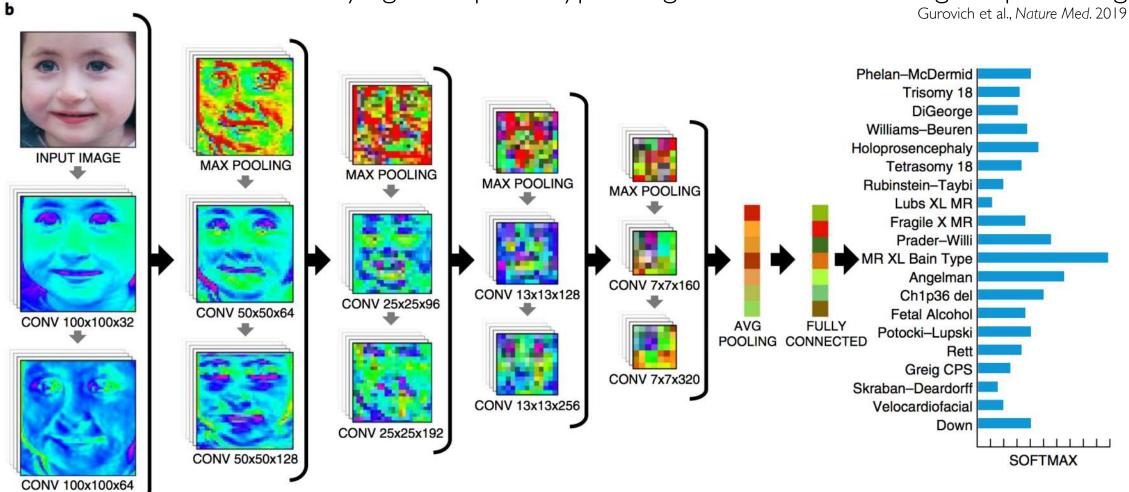
End-to-End Framework for Autonomous Navigation

Entire model is trained end-to-end without any human labelling or annotations



Impact: Healthcare

Identifying facial phenotypes of genetic disorders using deep learning



USER & ENTITY BEHAVIOR ANALYTICS (UEBA)

MACHINE LEARNING DRIVEN BEHAVIOR ANALYTICS IS A NEW WAY TO COMBAT ATTACKERS

- 1 Machine driven, not only human driven
- 2 Detect compromised users, not only attackers
- 3 Post-infection detection, not only prevention

REAL WORLD NEWS WORTHY EXAMPLES

COMPROMISED

40 million credit cards were stolen from Target's severs

STOLEN CREDENTIALS

Edward Snowden stole more than 1.7 million classified documents

INTENDED TO LEAK INFORMATION

NEGLIGENT

DDoS attack from 10M+ hacked home devices took down major websites

ALL USED THE SAME PASSWORD

REAL WORLD ATTACKS CAUGHT

SCANNING ATTACK

scan servers in the data center to find out vulnerable targets

DETECTED WITH
Active Directory (AD) LOGS

DATA DOWNLOAD

download data from internal document repository which is not typical for the host

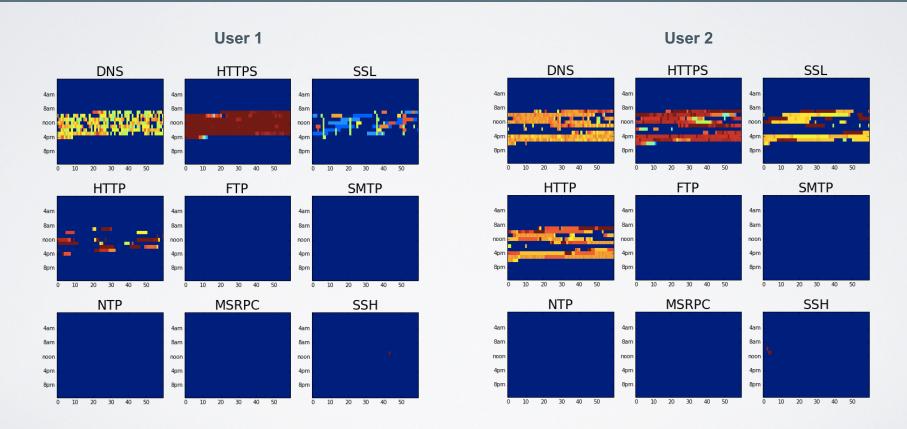
DETECTED WITH **NETWORK TRAFFIC**

EXFILTRATION OF DATA

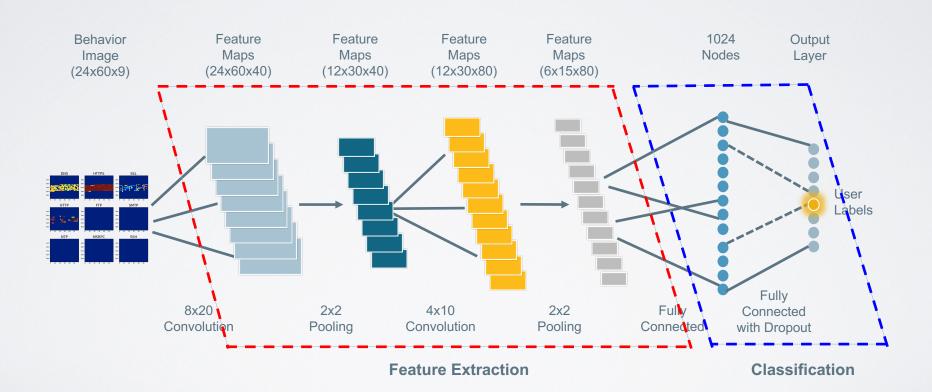
upload a large file to cloud server hosted in new country never accessed before

DETECTED WITH WEB PROXY LOGS

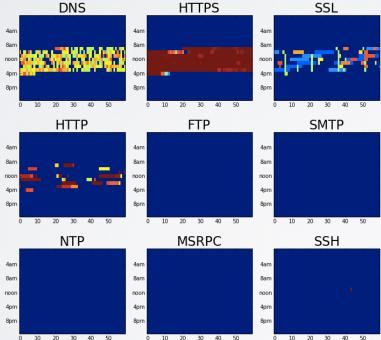
BEHAVIOR ENCODING USERS



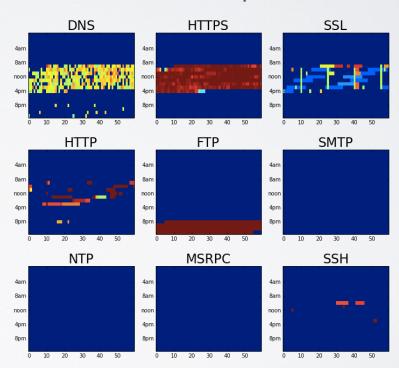
ANOMALY DETECTION CONVOLUTIONAL NEURAL NETWORK (CNN)



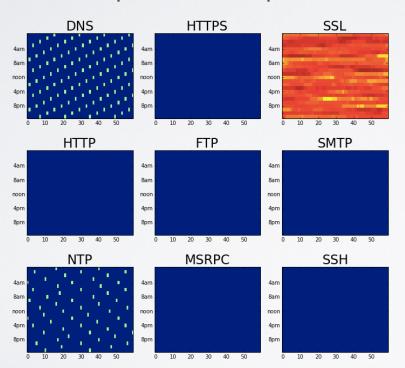
BEHAVIOR ANOMALY USER | EXFILTRATION



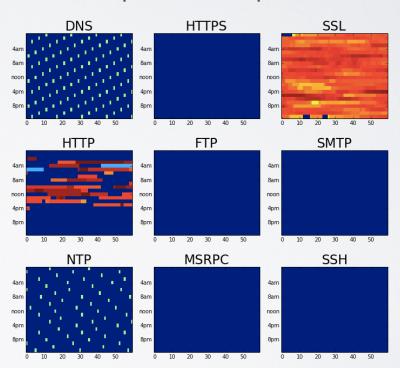
User – Post Compromise



BEHAVIOR ANOMALY IOT DEVICE | DATA DOWNLOAD



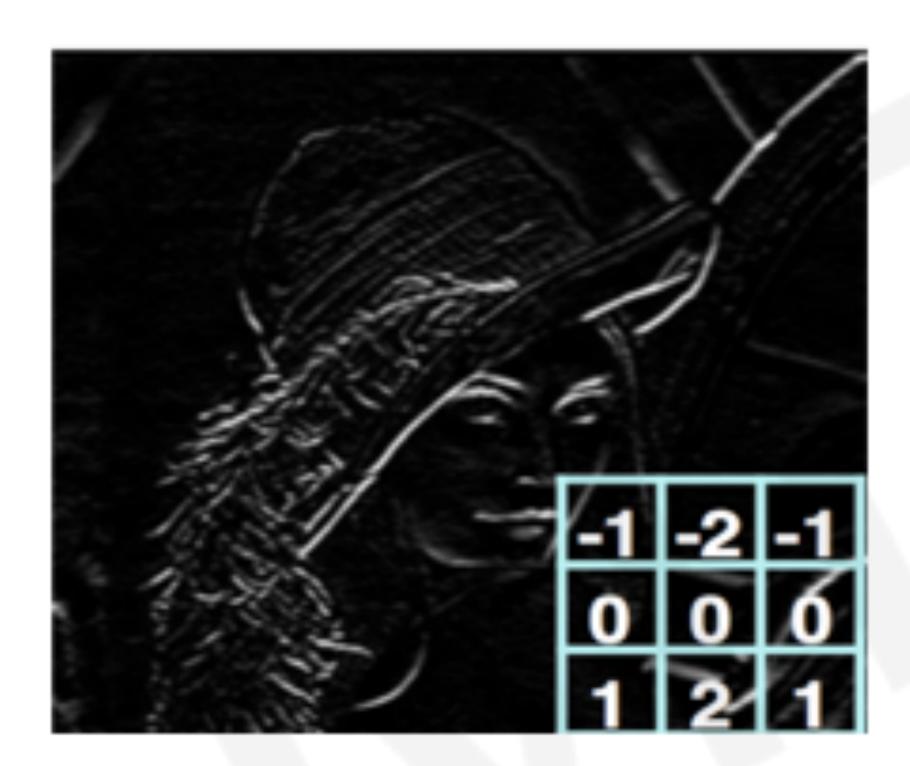
Dropcam - Post Compromise



Deep Learning for Computer Vision: Summary

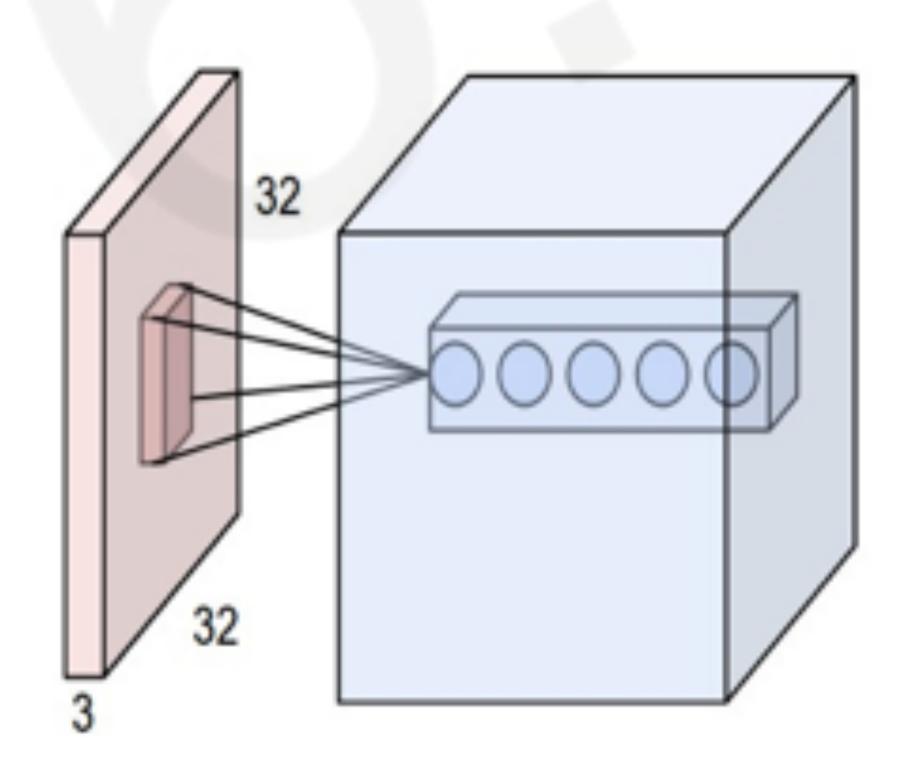
Foundations

- Why computer vision?
- Representing images
- Convolutions for feature extraction



CNNs

- CNN architecture
- Application to classification
- ImageNet



Applications

- Segmentation, image captioning, control
- Security, medicine, robotics

