
Deep Learning
Sequence to Sequence models:

Attention Models

1

Sequence to sequence models

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple” “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank” “Please check if your computer is plugged in.”

2

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v

The “simple” translation model

• The recurrent structure that extracts the hidden
representation from the input sequence is the encoder

• The recurrent structure that utilizes this representation
to produce the output sequence is the decoder

14

ENCODER

DECODER
<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

A problem with this framework

• All the information about the input sequence is
embedded into a single vector
– The “hidden” node layer at the end of the input sequence
– This one node is “overloaded” with information

• Particularly if the input is long
15

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

<sos>I ate an apple <eos>

A problem with this framework

16

I ate an apple<eos>

• In reality: All hidden values carry information
– Some of which may be diluted by the time we get to the final state of the

encoder

• Every output is related to the input directly
– Not sufficient to have the encoder hidden state to only the initial state of the

decoder
– Misses the direct relation of the outputs to the inputs

A problem with this framework

• In reality: All hidden values carry information
– Some of which may be diluted by the time we get to the final state of the

encoder

• Every output is related to the input directly
– Not sufficient to have the encoder hidden state to only the initial state of the

decoder
– Misses the direct relation of the outputs to the inputs

17

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple<eos> <sos>

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

20

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

21

Ich

I ate an apple <eos> <sos>

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

22

Ich

Ich habe

I ate an apple <eos> <sos>

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

23

Ich habe

Ich habe einen

I ate an apple <eos> <sos>

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

24

Ich habe einen

Ich habe einen apfel

I ate an apple <eos> <sos>

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

25

Ich habe einen apfel

Ich habe einen apfel gegessen

I ate an apple <eos> <sos>

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

26

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

Using all input hidden states

• This solution will work if the weights can somehow be made to “focus” on the
right input word

– E.g., when predicting the word “apfel”, 𝑤 (4), the weight for “apple” must be high while the
rest must be low

• How do we generate such weights?? 27

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

Attention Models

• Attention weights: The weights are dynamically computed as functions of
decoder state

– Expectation: if the model is well-trained, this will automatically “highlight” the correct input

• But how are these computed?
28

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

Attention weights at time

• The “attention” weights at time must be computed from available
information at time

• The primary information is (the state at time time)
– Also, the input word at time 𝑡, but generally not used for simplicity

29

Ich habe einen

Ich habe einen

I ate an apple <eos> <sos>

𝑐 =
1
𝑁

𝑤 (𝑡)ℎ

Requirement on attention weights

• The weights must be positive and sum to 1.0
– I.e. be a distribution
– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution: A two step weight computation
– First compute raw weights (which could be +ve or –ve)
– Then softmax them to convert them to a distribution 31

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

Sum to 1.0

Attention weights

• Typical options for (variables in red must learned)

35

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

Sum to 1.0

Attention weights

• Typical options for (variables in red must learned)

36

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

Sum to 1.0

Let’s consider a typical conversion process
assuming this model as an example

Converting an input: Inference

I ate an apple <eos>

• Pass the input through the encoder to
produce hidden representations

Converting an input: Inference

39

I ate an apple <eos>

<sos>

• Compute the attention weights 𝑤 0 for the first
output using 𝑠

– Will be a distribution over the input words

• Compute “context” 𝑐
– Weighted sum of input word hidden states

• Input 𝑐 and <sos> to the decoder at time 0
– <sos> because we are starting a new sequence
– In practice we will enter the embedding of <sos>

Converting an input: Inference

40

I ate an apple <eos>

<sos>

• The decoder computes
–
– A probability distribution over

the output vocabulary
• Output of softmax output layer

Converting an input: Inference

41

I ate an apple <eos>

<sos>

Ich

• Sample a word from the
output distribution

Converting an input: Inference

42

Ich

Ich

I ate an apple <eos>

<sos>

• Compute the attention weights 𝑤 1 over
all inputs for the second output using 𝑠

– Compute raw weights, followed by softmax

• Compute “context” 𝑐
– Weighted sum of input hidden representations

• Input 𝑐 and first output word to the
decoder

– In practice we enter the embedding of the word

Converting an input: Inference

43

Ich

Ich

I ate an apple <eos>

<sos>

• The decoder computes
–
– A probability distribution over

the output vocabulary

Converting an input: Inference

44

Ich

Ich

I ate an apple <eos>

<sos>

habe

• Sample the second
word from the output
distribution

Converting an input: Inference

45

Ich habe

Ich habe

I ate an apple <eos>

<sos>

Converting an input: Inference

46

Ich habe

Ich habe

I ate an apple <eos>

<sos>

Converting an input: Inference

47

Ich habe

Ich habe

I ate an apple <eos>

<sos>

einen

Converting an input: Inference

48

Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

Converting an input: Inference

49

Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

Converting an input: Inference

50

Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

apfel

Converting an input: Inference

51

Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

Converting an input: Inference

52

Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

Converting an input: Inference

53

Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

gegessen

Converting an input: Inference

54

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen

<sos>

I ate an apple <eos>

Converting an input: Inference

55

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen

<sos>

I ate an apple <eos>

Converting an input: Inference

56

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

<sos>

I ate an apple <eos>

Continue this process until
<eos> is drawn

Attention-based decoding

57

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 59

Ich

Ich habe

<sos>

I ate an apple <eos>

Input to hidden decoder
layer:

“Alignments” example: Bahdanau et al.

77i

t

t

Plot of 𝒊
Color shows value (white
is larger)

Note how most important
input words for any output
word get automatically
highlighted

The general trend is
somewhat linear because
word order is roughly
similar in both languages

i

Extensions: Multihead attention

• Have multiple query/key/value sets.
– Each attention “head” uses one of these sets
– The combined contexts from all heads are passed to the decoder

• Each “attender” focuses on a different aspect of the input that’s
important for the decode 87

Ich

<sos>

I ate

𝑒 𝑡 = 𝑔 𝒌 , 𝒒

𝑤 𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒 𝑡)

𝒍

Some impressive results..

• Attention-based models are currently
responsible for the state of the art in many
sequence-conversion systems
– Machine translation

• Input: Text in source language
• Output: Text in target language

– Speech recognition
• Input: Speech audio feature vector sequence
• Output: Transcribed word or character sequence

90

Attention models in image captioning

• “Show attend and tell: Neural image caption generation with visual
attention”, Xu et al., 2016

• Encoder network is a convolutional neural network
– Filter outputs at each location are the equivalent of 𝑖 in the regular

sequence-to-sequence model
91

Self attention

• First, for every word in the input sequence we
compute an initial representation
– E.g. using a single MLP layer

99

I ate an apple <eos>

Self attention

• Then, from each of the hidden representations, we
compute a query, a key, and a value.
– Using separate linear transforms
– The weight matrices , and are learnable parameters

100

I ate an apple <eos>

Self Attention

• For each word, we compute an attention weight between that word
and all other words
– The raw attention of the th word to the th word is a function of

query and key
– The raw attention values are put through a softmax to get the final

attention weights
101

I ate an apple <eos>

:

Softmax

• The updated representation for the word is
the attention-weighted sum of the values for
all words
– Including itself 102

I ate an apple <eos>

:

Softmax

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words 103

I ate an apple <eos>

:

Softmax

104

I ate an apple <eos>

:

SoftmaxSelf Attention

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

105

I ate an apple <eos>

:

SoftmaxSelf Attention

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

106

I ate an apple <eos>

SoftmaxSelf Attention

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

107

I ate an apple <eos>

SoftmaxSelf Attention

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

108

I ate an apple <eos>

:

Self Attention

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

109

I ate an apple <eos>

:

Self Attention

This is a “single-head” self-attention block

• We can have multiple such attention “heads”
– Each will have an independent set of queries, keys and values
– Each will obtain an independent set of attention weights

• Potentially focusing on a different aspect of the input than other heads

– Each computes an independent output

• The final output is the concatenation of the outputs of these attention heads
• “MULTI-HEAD ATTENTION” (actually Multi-head self attention) 110

I ate an apple <eos>

:

Concatenate

Attention head 0: (

• Multi-head self attention
– Multiple self-attention modules in parallel

111

I ate an apple <eos>

:

Multi-head Self Attention

• Typically, the output of the multi-head self attention is
passed through one or more regular feedforward layers
– Affine layer followed by a non-linear activation such as

ReLU
112

I ate an apple <eos>

:

Multi-head Self Attention

MLP

Dan Pei
Affine Layer is a fully connected layer (or dense layer) that performs a linear transformation followed by a bias addition.

• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block

113

I ate an apple <eos>

:

Multi-head Self Attention

MLP

MULTI-HEAD SELF ATTENTION BLOCK

• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block

114

I ate an apple <eos>

:

Multi-head Self Attention Block

MULTI-HEAD SELF ATTENTION BLOCK

• The encoder can include many layers of such
blocks

• No need for recurrence…
115

I ate an apple <eos>

Multi-head Self Attention Block

Multi-head Self Attention Block

• Recap: The encoder in a sequence-to-sequence model can replace
recurrence through a series of “multi-head self attention” blocks

• But this still ignores relative position
– A context word one word away is different from one 10 words away
– The attention framework does not take distance into consideration

117

I ate an apple <eos>

Multi-head Self Attention Block

Multi-head Self Attention Block

• Note that the inputs are actually word
embeddings

• We add a “positional” encoding to them to
capture the relative distance from one another

118

I ate an apple <eos>

Multi-head Self Attention Block

Word
Embeddings

119

I ate an apple <eos>

Multi-head Self Attention Block

Word
Embeddings

Positional Encoding

• Note that the inputs are actually word
embeddings

• We add a “positional” encoding to them to
capture the relative distance from one another

Positional Encoding

• A vector of sines and cosines of a harmonic series of frequencies
– Every 2𝑙-th component of 𝑃 is sin𝜔 𝑡
– Every 2𝑙 + 1-th component of 𝑃 is cos𝜔 𝑡

• Never repeats
• Has the linearity property required

121

regenerate

/

/

/cos

• The linear relationship between and enables the
net to learn shift-invariant “gap” dependent relationships

122

I ate an apple <eos>

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

Multi-head
Attention

Encoder Decoder

• The self-attending encoder!!
123

I ate an apple <eos>

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

Multi-head
Attention

Encoder Decoder

• The self-attending encoder!!
124

I ate an apple <eos>

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

Multi-head
Attention

Encoder Decoder

Can we use self attention to replace
recurrence in the decoder?

Self attention and masked self
attention

• Self attention in encoder: Can use input
embedding at time t+1 and further to compute
output at time t, because all inputs are available

125

xt

st

yt

Xt-1

St-1

Xt-2

St-1

Xt-3

St-3

Xt-4

St-4

wt-4
wt-3

wt-2

wt-1

xt+1

wt+1wt

Self attention and masked self
attention

• Self attention in decoder: Decoder is sequential
– Each word is produced using the previous word as input
– Only embeddings until time t are available to compute the

output at time t

• The attention will have to be “masked”, forcing attention
weights for t+1 and later to 0

126

xt

st

yt

Xt-1

St-1

Xt-2

St-1

Xt-3

St-3

Xt-4

St-4

wt-4
wt-3

wt-2

wt-1

xt+1

wt+1wt

132

I ate an apple <eos>

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

Multi-head
Attention

Encoder Decoder

Masked Multi-head Self Attention Block

Masked Multi-head Self Attention Block

Transformer: Attention is all you need

• Transformer: A sequence-to-sequence model that replaces
recurrence with positional encoding and multi-head self attention
– “Attention is all you need”

135

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems. 2017.

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 136

From “Attention is all you need”

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 137

From “Attention is all you need”

Why so good? Why so fast?

Recap: Vanishing/exploding gradients

138

• RNNs are just very deep networks
• LSTMs mitigate the problem at the cost of 3x more matrix

multiplications
• Transformers get rid of it! To encode a full sentence, they have way

fewer layers than an unrolled RNN.
• The same goes with the vanishing memory issue to an extent.

Processing order

• Computing requires …
• Which requires , etc…
• RNN inputs must be processed in order

slow implementation
139

h-1

Processing order

• can be computed separately.
• dot products to compute.
• Self attention is easy to compute in parallel

Faster implementations 140

I ate an apple <eos>

Softmax

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 141

From “Attention is all you need”

GPT

• GPT uses only the decoder of the transformer as an LM
– “Transformer w/o aux LM”

• Large performance improvement in many tasks
142

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training

GPT

• Add Task conditioning: put the nature of your task in the input (not just
LM)

• Parameters x1000
 GPT-3 : Generalizes to more tasks, not just more inputs! 143

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training

BERT

• Bert: Only uses encoder of transformer to derive word and sentence
embeddings

• Trained to “fill in the blanks”
• This is representation learning (more next lecture) 144

Attention is all you need

• Self-attention can effectively replace recurrence in
sequence-to-sequence models
– “Transformers”
– Requires “positional encoding” to capture positional

information

• Can also be used in regular sequence analysis settings as a
substitute for recurrence

• Currently the state of the art in most sequence
analysis/prediction…

145

Attention is all you need

• Self-attention can effectively replace recurrence in
sequence-to-sequence models
– “Transformers”
– Requires “positional encoding” to capture positional

information

• Can also be used in regular sequence analysis settings as a
substitute for recurrence

• Currently the state of the art in most sequence
analysis/prediction… and even computer vison problems!

146

Vision Transformers

• Divide your image in patches with pos. encodings
• Apply Self-Attention!
 Sequential and image problems are similar when using
transformers 149

Dosovitskiy et al, An
Image is Worth 16x16
Words: Transformers
for Image Recognition
at Scale, 2020

Impact of Transformers

• Transformers have played a major role in the
“uniformization” of DL-based tasks:
– Find a pretrained “BERT-like” transformer (Text, Image, Speech)
– Fine-tune on your task – or not! (Prompting…)

• This has helped democratize Deep Learning considerably

• But…

150

Caveat 1

• Not all transformers are the same: Big/small,
fast/slow, mono-/multilingual, contrastive/
generative, regressive/autoencoding…

• Pick the right one!

151

Caveat 2

• Transformers are not always the right choice.

• They often require more parameters than
LSTMs at equal performance

 Tricky on small hardware (phones, IoT, etc)

152

