

STEP: Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting

Zezhi Shao^{1,2}, Zhao Zhang , Fei Wang , Yongjun Xu Institute of Computing Technology, Chinese Academy of Sciences ²University of Chinese Academy of Sciences

STEP

Experiments

STEP

Experiments

Multivariate Time Series (MTS)

Multivariate time series data is ubiquitous in many systems. It contains time series from multiple interlinked variables.

Each variable generates a time series.

Subway

Electricity

Spatial-Temporal Graph Data

Temporal: Complex temporal patterns, *e.g.*, multiple periodicities. **Spatial:** Underlying interdependencies between variables, which is non-Euclidean and is reasonably modeled by the graph structure.

Spatial-Temporal Graph Data

MTS from Traffic Flow System

Spatial-Temporal Graph Neural Networks (STGNNs)

Combine graph neural networks (spatial) and sequential models (temporal).

Learning the Graph Structure

The handcrafted dependency graph between time series is often biased and incorrect, even missing in many cases.

Existing STGNNs can not scale to very long-term history

The computational complexity increases linearly or quadratically with the length and number of the input TS. The optimization of the model can also become problematic as the length of the input sequence increases.

Long-term historical time series are crucial

Beneficial for distinguishing short-term time series in different contexts. Beneficial for resisting noise, facilitating learning robust and accurate dependency graph.

Challenges

How to learn from very long-term (*e.g.*, weeks) historical time series to enhance STGNNs?

STEP Framework

Instead of directly extending STGNNs to very long-term historical time series, we propose a novel framework, in which **ST**GNN is **E**nhanced by a scalable time series **P**re-training model (STEP).

STEP

Experiments

STEP Framework

Key Design Motivations

Time series information density is lower.

- Isolated data points in time series give less semantic information
- Masked values in time series can often be trivially predicted by simple interpolation, making the pre-training model only focuses on low-level information.

Time series require longer sequences to learn the temporal patterns.

1?> **Effective & High Efficiency**

Key Design Motivations

2

Time series information density is lower.

Time series require longer sequences to learn the temporal patterns.

- **Segment-level representation**
- High mask ratio
- Asymmetrical design
- Learnable positional encoding

Effective & High Efficiency

STEP Framework

Enhancing the STGNNs

Graph structure learning.

Enhancing the STGNNs

Downstream STGNNs.

2

[1] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAI.

STEP

Experiments

Datasets

Table 1: Statistics of datasets.

Dataset	# Samples	# Node	Sample Rate	Time Span	
METR-LA	34727	207	5mins	4 months	
PEMS-BAY	52116	325	5mins	6 months	
PEMS04	16969	307	5mins	2 months	

Metrics

- MAPE

Hardware

NVIDIA RTX3090

Experiments Main Results 3

Datasets	Methods	Horizon 3		Horizon 6			Horizon 12			
		MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
METR-LA	HA	4.79	10.00	11.70%	5.47	11.45	13.50%	6.99	13.89	17.54%
	VAR	4.42	7.80	13.00%	5.41	9.13	12.70%	6.52	10.11	15.80%
	SVR	3.39	8.45	9.30%	5.05	10.87	12.10%	6.72	13.76	16.70%
	FC-LSTM	3.44	6.30	9.60%	3.77	7.23	10.09%	4.37	8.69	14.00%
	DCRNN	2.77	5.38	7.30%	3.15	6.45	8.80%	3.60	7.60	10.50%
	STGCN	2.88	5.74	7.62%	3.47	7.24	9.57%	4.59	9.40	12.70%
	Graph WaveNet	2.69	5.15	6.90%	3.07	6.22	8.37%	3.53	7.37	10.01%
	ASTGCN	4.86	9.27	9.21%	5.43	10.61	10.13%	6.51	12.52	11.64%
	STSGCN	3.31	7.62	8.06%	4.13	9.77	10.29%	5.06	11.66	12.91%
	GMAN	2.80	5.55	7.41%	3.12	6.49	8.73%	3.44	7.35	10.07%
	MTGNN	2.69	5.18	6.88%	3.05	6.17	8.19%	3.49	7.23	9.87%
	GTS	2.67	5.27	7.21%	3.04	6.25	8.41%	3.46	7.31	9.98%
	STEP	2.61*	4.98 *	6.60 % [*]	2.96*	5.9 7*	7.96%*	3.37*	6.99 *	9.61%*
*****	НА	1 89	4 30	4 16%	2 50	5 82	5 62%	3 31	7 54	7 65%
PEMS-BAY	VAR	1 74	3 16	3 60%	2.32	4 25	5.00%	2.93	5 4 4	6 50%
	SVR	1.85	3.59	3.80%	2.48	5.18	5.50%	3.28	7.08	8.00%
	FC-LSTM	2.05	4.19	4.80%	2.20	4.55	5.20%	2.37	4.96	5.70%
	DCRNN	1.38	2.95	2.90%	1.74	3.97	3.90%	2.07	4.74	4.90%
	STGCN	1.36	2.96	2.90%	1.81	4.27	4.17%	2.49	5.69	5.79%
	Graph WaveNet	1.30	2.74	2.73%	1.63	3.70	3.67%	1.95	4.52	4.63%
	ASTGCN	1.52	3.13	3.22%	2.01	4.27	4.48%	2.61	5.42	6.00%
	STSGCN	1.44	3.01	3.04%	1.83	4.18	4.17%	2.26	5.21	5.40%
	GMAN	1.34	2.91	2.86%	1.63	3.76	3.68%	1.86	4.32	4.37%
	MTGNN	1.32	2.79	2.77%	1.65	3.74	3.69%	1.94	4.49	4.53%
	GTS	1.34	2.83	2.82%	1.66	3.78	3.77%	1.95	4.43	4.58%
	STEP	1.26*	2.73*	2.59%*	1.55*	3.58*	3.43%*	1.79*	4.20*	4.18%*
*****	ΗΔ	28.02	12 60	20 31%	33 73	10 37	24.01%	46.07	67 13	35 11%
PEMS04	VAR	21.94	34 30	16 42%	23 72	36 58	18 02%	26 76	40.28	20 94%
	SVR	21.74	35 30	14 71%	27.63	42 23	18 20%	37.86	56.01	20.74%
	FC-I STM	21.32	33 37	15 32%	25.83	30 10	20.35%	36.41	50.01	20.72%
	DCRNN	20.34	31 94	13.65%	23.05	36 15	15 70%	29 24	44 81	20.09%
	STGCN	19 35	30.76	12.81%	21.85	34 43	14 13%	26.97	41 11	16 84%
	Graph WaveNet	18 15	29 24	12.01%	19 12	30.62	13 28%	20.69	33.02	14 11%
	ASTGCN	20.15	31.43	14.03%	22.09	34.34	15.47%	26.03	40.02	19.17%
	STSGCN	19 41	30.69	12.82%	21.83	34 33	14 54%	26.27	40 11	14 71%
	GMAN	18 28	29 32	12.02%	18 75	30 77	12.96%	19 95	30.21	12 07%
	MTGNN	18 22	30 13	12.55%	19.75	32 21	13 09%	20.03	34 40	14 02%
	GTS	18.97	29.83	13.06%	19.27	30.85	13.92%	21.04	34.81	14.94%
	010	48.04*		13.00/0	10 10*	00.03*	10.00~*	40.05*	01.01	10 50~*
	SIEP	17.34	28.44*	11.57%*	18.12*	29.81*	12.00%	19.27*	31.33	12.78%

Table 2: Multivariate time series forecasting on the METR-LA, PEMS-BAY, and PEMS04 datasets. Numbers marked with * indicate that the improvement is statistically significant compared with the best baseline (t-test with p-value < 0.05).

Experiments Inspecting the TSFormer 3

3 Experiments Ablation Study & Hyper-parameter Study

Figure 4: Ablation study and hyper-parameter study.

Ablation Study

- Graph structure learning module consistently plays a positive role.
- Segment-level representation plays a vital role.
- Long sequence representations of
 TSFormer is superior in improving
 the graph quality.
- **STEP** is a general framework.

Hyper-parameter Study

- Best mask ratio: 75%
- Best *k* of *k*NN graph: 10

STEP

Experiments

Conclusions

- **Existing STGNNs can be improved by introducing more information** from very long-term historical time series
- We design an efficient and effective pre-training model for time series, which generates segment-level representations and can be designed based on Transformer blocks and masked autoencoding strategy.

Future Work

- **Time series recovery using TSFormer**
- **Further improve the efficiency and effectiveness of TSFormer**
- **Provide contextual information more flexible**

Thank You! Q & A

More Materials:

Code of STEP: <u>https://github.com/zezhishao/STEP</u> Fair comparison of all STGNNs: <u>https://github.com/zezhishao/BasicTS</u>

Figure 7: Reconstruction visualizations.

5

Figure 8: Forecasting visualizations.

Efficiency & Speed

Figure 5: Training speed of different masking ratio r.

Figure 6: Training speed of different methods.