AIOps Fall2020 – Syllabus

 

 



Assignments (Each student finishes each assignment alone)

1. Data processing and visualization: 10%

2. Log Anomaly Detection: 20%

Project (A team of 2-3 students finish the project together)

3. Microservices Anomaly Detection and Localization Competition from  AIOps Challenge: 60%

Syllabus:

 

Week Date Topic, Papers, Slides and Reading List Algorithms & Techniques
1 Sep 16 (19:20-21:45) Course Introduction
2 Sep 23 (19:20-21:45) Video streaming Data Visualization

Correlation, Regression, Information gain, Decision trees, Regression trees

 

3 Sep 30 (19:20-21:45)
4 Oct 7 (19:20-21:45)
5 Oct 14 (19:20-21:45) KPI Anomaly detection Time series Algorithms.

Random Forests

Deep Generative Models (VAE & GAN)

Deep Sequence Learning

 

6 Oct 21 (19:20-21:45)
7 Oct 28 (19:20-21:45) KPI Anomaly Localization Similarity

Clustering

KDE

Learning-to-Rank

8 Nov 4 (19:20-21:45)
9 Nov 11 (19:20-21:45) Log Anomaly Detection Learning From Text

SVM

PCA

Logistic Regression

Transfer Learning

10 Nov 18 (19:20-21:45)
11 Nov 25 (19:20-21:45) Trace Anomaly Detection and Localization Random Walk
12 Dec 2 (19:20-21:45) Incident Management Multi-Instance-Learning

Extreme Gradient Boosted Trees

13 Dec 9 (19:20-21:45) Resource Management

Deep Reinforcement Learning

Graph Neural Network

14 Dec 16 (19:20-21:45) Signatureless Security Neural Machine Translation
15 Dec 23 (19:20-21:45) Project Presentation

 

 
 
 
Scroll Up